
Designing Application-Aware Systems for
Mining Large Graph Data

by

Kasra Jamshidi

B.Sc., Simon Fraser University, 2019

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
School of Computing Science
Faculty of Applied Sciences

© Kasra Jamshidi 2024
SIMON FRASER UNIVERSITY

Fall 2024

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Kasra Jamshidi

Degree: Doctor of Philosophy

Thesis title: Designing Application-Aware Systems for Mining
Large Graph Data

Committee: Chair: Yuepeng Wang
Assistant Professor, Computing Science

Keval Vora
Supervisor
Associate Professor, Computing Science

Nick Sumner
Committee Member
Associate Professor, Computing Science

Anders Miltner
Examiner
Assistant Professor, Computing Science

Matei Ripeanu
External Examiner
Professor
Electrical and Computer Engineering
University of British Columbia

ii

Abstract

Graph mining is a class of graph analytics whose applications depend on solutions to the
NP-complete subgraph isomorphism problem, as well as related problems like subgraph
counting, to process an input graph’s subgraphs. As a result, graph mining is typically more
computationally expensive than traditional graph processing workloads. Furthermore, ef-
ficient algorithms for graph mining applications have extremely diverse structures. While
different research communities have studied domain-specific graph mining applications for
many years, research on efficiently executing general classes of graph mining problems and
systems for easily programming scalable graph mining applications has emerged only re-
cently. Existing work has focused on adapting graph mining applications to existing generic
systems techniques. Instead, this thesis argues for application-aware design, a philoso-
phy that seeks to leverage the semantics of graph mining applications to build faster, more
scalable, and more fault tolerant systems.

Specifically, this thesis formalizes a model of graph mining applications and applies it in
four scenarios:

(i) extending the traditional definition of subgraph isomorphism with novel graph con-
structs that can express local constraints on subgraphs;

(ii) developing an application-aware graph mining system which leverages well-known but
difficult to integrate techniques for efficiently mining graphs;

(iii) exploiting algebraic properties of subgraphs and aggregations to design a generic
middle-end optimization framework that automatically discovers more efficient alter-
natives to a given set of input graph patterns while preserving application correctness;

(iv) leveraging the gap in cost between computing and verifying the results of subgraph
matching (the NP-complete problem underpinning graph mining) in order to develop
a novel distributed architecture with stronger fault tolerance guarantees and greater
scalability than existing systems.

Keywords: parallel systems; distributed systems; graph mining

iii

Acknowledgements

It takes a village to write a doctoral dissertation, and the completion of the work before you
reflects the outstanding character of the people who have supported me up to this point. My
greatest influence has been my advisor Prof. Keval Vora, who poured a significant portion of
his own time and energy into my work, and his attentiveness were instrumental in sparking
my interest in research, building my confidence, and teaching me how to write papers. None
of this research would have come about without his persistent efforts and invaluable advice.
I was fortunate to work alongside several other talented researchers. Rakesh Mahadasa
and I implemented Peregrine together, one of my most exciting professional experiences.
Mugilan Mariappan and Joanna Che were always keen, compassionate, and helpful, whether
we were bouncing ideas off each other, grading assignments, or collaborating on papers. I
am also grateful to much of the computing science faculty at SFU. Insofar as my research
blends ideas from different fields and subfields, I was first exposed to these ideas through
conversations with kind and enthusiastic professors whose generous guidance often extended
beyond technical ideas and feedback on presentations to broader topics of life itself.

My friends and family were perhaps even more crucial to any successes I’ve had. Putting
together my parents, brother, friends, uncles, cousins, grandmothers, and in-laws, I had a
personal cheerleading team every step of graduate school. Their faith in me and support
for my research never wavered, despite suffering many declined invitations, reschedulings,
and cancellations at my hands while I pursued deadlines. My parents provided consistently
sage and empathetic advice, deftly balancing immediate struggles with thoughts for my
future. My brother Sina always knew how to use his humour to uplift or divert me, as
necessary, and his own successes did much to inspire me. Likewise, my friends became adept
at redirecting my focus off work, whether through lighthearted conversation with Behbod
Negahban, or exercise and excellent music with Stefan Nazarevich, Philip Nienartowicz,
and Josh Smith. Finally, my wife Iulia has been my steadfast partner through this and
many other projects. I am grateful for her love, care, and understanding even as she was
bogged down by the stresses of her own obligations, and for her patient, sympathetic, yet
matter-of-fact reassurances that I would complete this dissertation.

iv

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables ix

List of Figures x

1 Introduction 1

2 Preliminaries 6
2.1 Terminology . 6
2.2 Application Semantics . 8

2.2.1 Examples . 9

3 Application-Oblivious Graph Mining Systems 12
3.1 Understanding Programmable Graph Mining Systems 12

3.1.1 Arabesque: General-Purpose Graph Mining 12
3.1.2 Fractal: Depth-First Graph Mining 16
3.1.3 AutoMine: Pattern-Based Graph Mining 18

3.2 Consequences of Application-Obliviousness 20

4 Using Patterns to Specify Interesting Subgraphs 23
4.1 Anti-Edge: Concept and Semantics . 25

4.1.1 Absence of Edges . 25
4.1.2 Formal Anti-Edge Semantics . 26

4.2 Anti-Vertex: Concept & Semantics . 27
4.2.1 Constraints on Match Neighbourhoods 28
4.2.2 Formal Anti-Vertex Semantics . 30

4.3 Extended Subgraph Isomorphism . 31

v

4.4 Conclusion . 32

5 Peregrine: Application Semantics in Pattern-Based Systems 33
5.1 Issues with Graph Mining Systems . 35

5.1.1 Performance . 35
5.1.2 Programmability . 36

5.2 Overview of Peregrine . 37
5.3 Peregrine Programming Model . 38

5.3.1 Peregrine Patterns . 39
5.3.2 Pattern-Aware Mining Programs in Peregrine 41

5.4 Pattern-Aware Matching Engine . 42
5.4.1 Directly Matching A Given Pattern 42
5.4.2 Matching Under Extended Subgraph Isomorphism 43
5.4.3 Neighbourhood Groups . 46
5.4.4 Match Groups & Fast Paths . 46

5.5 Peregrine: Pattern-Aware Mining . 48
5.5.1 Pattern-Aware Processing Model . 48
5.5.2 Early Pruning for Dynamic Load Balancing 49
5.5.3 Early Termination for Existence Queries 49
5.5.4 On-the-fly Aggregation . 50
5.5.5 Implementation Details . 50

5.6 Evaluation . 50
5.6.1 Experimental Setup . 50
5.6.2 Comparison with Breadth-First Enumeration 52
5.6.3 Comparison with Depth-First Enumeration 52
5.6.4 Comparison with Purpose-Built Algorithms 55
5.6.5 Mining with Constraints in Peregrine 56
5.6.6 Peregrine’s Pattern-Aware Runtime 57
5.6.7 System Characteristics . 61

5.7 Conclusion . 63

6 Subgraph Morphing: Application Semantics in a System-Agnostic Frame-
work 64
6.1 Performance Analysis . 66

6.1.1 Graph Mining Applications . 66
6.1.2 Structure of Patterns . 66
6.1.3 Structure of Data Graphs . 68
6.1.4 Graph Mining Systems . 68
6.1.5 Motivation Summary . 69

6.2 Subgraph Morphing . 69

vi

6.2.1 Overview . 69
6.2.2 Intuition & Example . 70
6.2.3 Semantics . 71
6.2.4 Significance of Generic Subgraph Morphing 73
6.2.5 Proofs of Equivalence . 74

6.3 Generating Alternative Pattern Sets . 76
6.3.1 Initial Alternative Patterns . 77
6.3.2 Selecting Efficient Alternative Patterns 78

6.4 Transforming Results . 80
6.4.1 Post-Matching Conversion . 81
6.4.2 On-the-Fly Conversion . 82

6.5 Evaluation . 83
6.5.1 Morphing for Reducing Set Operation Time 85
6.5.2 Morphing for Reducing UDF Overheads 86
6.5.3 On-the-Fly Conversion . 88
6.5.4 Scaling to Large Patterns . 89
6.5.5 Cost Model Effectiveness . 89

6.6 Conclusion . 90

7 OsirisBFT: Application Semantics in Distributed Architecture 91
7.1 Overview of OsirisBFT . 95
7.2 System Model . 98
7.3 Identifying Application Faults . 98

7.3.1 Incremental Graph Mining . 99
7.3.2 Output Failure Model . 100
7.3.3 Properties for Verification . 101
7.3.4 Output Verification Model . 102
7.3.5 Verifiability Beyond Graph Mining 104

7.4 Verifiable Processing with OsirisBFT . 105
7.4.1 Normal Execution . 105
7.4.2 Detecting Failures . 107
7.4.3 Dynamic Role-Switching . 109

7.5 Safety and Liveness . 110
7.5.1 Safety . 110
7.5.2 Liveness . 111

7.6 Evaluation . 112
7.6.1 Graceful Execution Performance . 114
7.6.2 Bottleneck Analysis . 115
7.6.3 Dynamic Role-Switching . 116

vii

7.6.4 Performance Under Failures . 117
7.7 Conclusion . 118

8 Related Work 119
8.1 General-Purpose Graph Mining Systems . 119
8.2 Approximation . 121
8.3 Graph Querying . 122
8.4 Application-Specific Graph Mining . 123
8.5 Byzantine Fault Tolerance . 125
8.6 Graph Processing Systems . 126

9 Conclusion 127

Bibliography 129

Appendix A Anti-Vertex: Generalizations and Further Examples 150
A.1 Generalizations . 150

A.1.1 Other Matching Semantics . 150
A.1.2 Property Graphs . 150

A.2 Anti-Vertex in Graph Query Languages . 152
A.2.1 Constraining Neighbourhoods in Cypher 152
A.2.2 Augmenting Cypher with Anti-Vertex Semantics 153
A.2.3 Examples with the Enhanced Cypher Grammars 155

Appendix B Applications with Subgraph Morphing 158
B.1 Frequent Subgraph Mining . 158
B.2 Subgraph Counting . 159

viii

List of Tables

Table 2.1 Terminology used in the literature. This thesis uses the bolded terms. 8

Table 5.1 Peregrine performance summary. PRG-U indicates Peregrine with-
out symmetry breaking, to model systems that are not fully pattern-
aware (e.g., AutoMine). 34

Table 5.2 Real-world graphs used in evaluation. ’—’ indicates unlabeled graph. 51
Table 5.3 Execution times (in seconds) for Peregrine, Arabesque [205] and

RStream [219]. ’×’ indicates the execution did not finish within 5 hours.
’—’ indicates the system ran out of memory. ’/’ indicates the system
ran out of disk space. 53

Table 5.4 Execution times (in seconds) for Peregrine and Fractal [77]. ’—’ in-
dicates the system ran out of memory. ’×’ indicates the execution did
not finish within 5 hours. 54

Table 5.5 Execution times (in seconds) for Peregrine and G-Miner [45]. ’/’
indicates the system ran out of disk space. 56

Table 5.6 Peregrine execution times (in seconds) for matching with an anti-
vertex (p7), matching with an anti-edge (p8), and 14-clique existence
query. 56

Table 7.1 Performance and fault tolerance of OsirisBFT compared to replicated
computation strategy (RCP) and a baseline with no fault tolerance
(ZFT). 97

ix

List of Figures

Figure 2.1 The 6 unique automorphisms of a triangle graph, obtained through
the identity transformation, clockwise or counter-clockwise rotation,
or reflection around a vertex. 7

Figure 3.1 Triangle Counting programs in the Filter-Process [205] and TLV [140]
programming models. 13

Figure 3.2 Triangle counting in a small graph using the breadth-first processing
model from Arabesque [205]. Dashed lines represent barriers between
supersteps, where matches from the previous superstep are filtered,
processed, and extended into the next superstep. 14

Figure 3.3 Triangle Counting and FSM applications in Fractal [77]. 17
Figure 3.4 Triangle counting application in AutoMine [146]. 19
Figure 3.5 Local Clique Counting programs in Fractal and AutoMine. System

functions are highlighted blue. 20

Figure 4.1 Friend recommendation use case. 26
Figure 4.2 Anomaly detection use case. 28
Figure 4.3 Maximal cliques use case. 28

Figure 5.1 Step-by-step exploration in graph mining systems starting at vertex
1 and vertex 3. In total, 13 partial matches get explored and 13
canonicality checks are performed that prune out 5 partial matches.
Isomorphism checks are performed on the remaining 8 matches for
applications like FSM. 35

Figure 5.2 Number of matches explored (partial and full), canonicality checks
performed, and isomorphism checks performed by RStream [219],
Arabesque [205] and Fractal [77]. Numbers in brackets indicate the
magnitude of matches explored relative to result size. 37

Figure 5.3 Peregrine Pattern Interface. 39
Figure 5.4 Graph mining use cases in Peregrine’s pattern-aware programming

model. 40
Figure 5.5 Computing exploration plan. 42
Figure 5.6 Example of a pattern graph and a data graph. 42

x

Figure 5.7 Anti-Edge and Anti-Vertex Examples. 44
Figure 5.8 Pattern-Aware Processing Model. 48
Figure 5.9 Pattern-guided exploration in Peregrine for pattern and data graph

in Figure 5.6 with matching order high-to-low. 48
Figure 5.10 Patterns used in evaluation. 51
Figure 5.11 Execution times (in seconds) for Peregrine with (PRG) and with-

out (PRG-U) symmetry breaking. PRG-U could not finish matching
any of the 4-motif patterns on Orkut within 5 hours. 57

Figure 5.12 Patterns used in micro-benchmarks. 58
Figure 5.13 Execution times for pattern matching queries with neighbourhood

groups (NG) and without neighbourhood groups (W/O NG). All
times are normalized w.r.t. W/O NG. 58

Figure 5.14 Execution time for pattern matching queries with match group fast
paths (MG) and without match group fast paths (W/O MG). All
times are normalized w.r.t. W/O MG. 59

Figure 5.15 Number of branches for pattern matching queries with match group
fast paths (MG) and without match group fast paths (W/O MG).
All numbers are normalized w.r.t. W/O MG. 60

Figure 5.16 Peregrine 4-motif execution time breakdown on Orkut and MiCo. 60
Figure 5.17 (a) Scalability (PRG HT = hyper-threaded). (b) CPU utilization

(solid) and memory bandwidth (dashed) for 24 cores (blue), 47 cores
(green) and 94 cores (red). 61

Figure 5.18 Peak memory usage of different systems across various applications.
Tall red bars represent RStream out of memory errors. 62

Figure 6.1 Common pattern names. 66
Figure 6.2 Profiling graph mining systems. Figures (a-c) show performance break-

down of FSM, Subgraph Matching and Subgraph Counting on Pere-
grine; (d-e) show performance breakdown of enumerating matches
in GraphPi [192] and BigJoin [17]; (f) shows the relative performance
of mining patterns on different data graphs in Peregrine (relative
w.r.t. longer execution for each data graph). MG and MI are MAG
and MiCo data graphs (see Figure 6.10). 4CL, C4C, TT and 4S are
patterns 4-clique, chordal 4-cycle, tailed triangle and 4-star respec-
tively (see Figure 6.1). The suffixes “-V” and “-E” indicate vertex-
induced and edge-induced patterns (e.g., TT-V is vertex-induced
tailed triangle). 67

Figure 6.3 Graph mining with Subgraph Morphing. 70
Figure 6.4 Identifying matches for different patterns. 71

xi

Figure 6.5 Sample equations resulting from subgraph morphing. [SM-V1] morphs
vertex-induced pattern (left) whereas other equations morph edge-
induced patterns. [SM-E1] and [SM-E2] are directly obtained from
Eq. 6.1, [SM-E3] by recursively substituting in [SM-E1], and [SM-
V1] by adjusting [SM-E2]. The coefficients indicate the numbers of
unique matches resulting from subgraph isomorphism. 72

Figure 6.6 S-DAG for unlabeled patterns (on left), and for patterns with one
yellow labeled vertex (on right). 78

Figure 6.7 FSM Application. 82
Figure 6.8 Converting MNI aggregation for FSM. 82
Figure 6.9 Vertex-induced patterns used in evaluation. The edge-induced vari-

ants do not contain anti-edges. 83
Figure 6.10 Real-world graphs used in evaluation. 84
Figure 6.11 Performance improvements from Subgraph Morphing in Pere-

grine & AutoZero for Motif Counting relative to baseline system
without morphing; absolute times (in seconds) for when Subgraph
Morphing is enabled are shown on top of the bars. Red bars in-
dicate the cases where baseline did not finish within 24 hours (i.e.,
speedups for those cases are underestimated). 84

Figure 6.12 Reductions in set operation times from Subgraph Morphing for
Motif Counting in Peregrine and AutoZero relative to baseline
system without morphing. Bars are marked with mean absolute times
(in seconds) from executions where Subgraph Morphing is enabled. 85

Figure 6.13 Performance improvements from Subgraph Morphing in Pere-
grine for Subgraph Counting. 85

Figure 6.14 Performance improvements from Subgraph Morphing in Pere-
grine for Frequent Subgraph Mining. Minimum speedups are re-
ported in brackets. Note that 4-FSM on larger graphs did not finish
in 24 hours since the complexity grows exponentially, requiring more
resources (more machines and time). 86

Figure 6.15 Performance improvements from Subgraph Morphing in GraphPi
and BiGJoin. 87

Figure 6.16 Reduction in branches and branch misses in GraphPi and BiGJoin
relative to execution without Subgraph Morphing. 87

Figure 6.17 Performance improvements from Subgraph Morphing in Pere-
grine for Subgraph Enumeration with On-the-Fly conversion (ab-
solute times in seconds). 88

Figure 6.18 Performance improvements from Subgraph Morphing for large
patterns. 89

xii

Figure 6.19 The space of alternative pattern sets for 5-motifs and their perfor-
mance (in seconds) using Peregrine on MiCo graph. The input
pattern set is marked by the cross and the set selected by the cost
model is marked by the triangle. 89

Figure 7.1 Anomaly Detection. Update tasks modify the data store and com-
putation tasks perform pattern matching on the modified graph. . . 92

Figure 7.2 Scaling of RSM-based processing for Anomaly Detection (i.e., with
detectAnomaly() replicated) assuming at most f failures per replica
group. 94

Figure 7.3 Verification-based processing architecture. 96
Figure 7.4 Overview of verification-based processing. 106
Figure 7.5 Throughput scalability. 113
Figure 7.6 Throughput scalability across different Anomaly Detection workloads.115
Figure 7.7 (a): effect of role-switching on Anomaly Detection workloads; (b):

throughput-latency curve as the number of tasks submitted per sec-
ond increases. 115

Figure 7.8 Performance with Byzantine faults. 117

xiii

Chapter 1

Introduction

In both industrial and academic settings, the size of available graph data—and the desire to
analyze it—is growing rapidly [183]. Small subgraphs provide insight into the broader struc-
ture of a graph, and thus constitute key components in data mining algorithms on graphs,
across a variety of domains including bioinformatics [220, 156, 158], computer vision [58],
cybersecurity [112], program analysis [84, 201], and social network analysis [179, 185, 221].
This important class of algorithms is defined in the systems literature as graph mining, and
focuses on structural analysis of graphs through their subgraphs [205].

Graph mining poses two fundamental challenges that makes it interesting to systems
researchers. The first challenge is the cost in both time and space required for mining
large graphs. Analysis of subgraphs may depend on solutions to the NP-complete subgraph
isomorphism problem or related hard problems like subgraph counting, and the number
of subgraphs that must be analyzed scales exponentially with the size of the input graph.
As a result, graph mining is resource intensive, especially compared to traditional graph
processing workloads like PageRank which can be computed in polynomial time [140], to the
point where the 50-kilobyte CiteSeer graph [82] containing only 4,700 edges can take minutes
to mine [205] despite fitting easily within the L1 cache. Thus, scaling graph mining workloads
to real-world graphs with millions or billions of edges requires sophisticated parallel systems.

Second, efficient graph mining algorithms have been developed independently by differ-
ent scientific communities, each applying their own perspectives to solve narrow problems
within their respective domains. The result is that vertical slices of graph mining knowl-
edge are siloed within each field, with large inconsistencies in the structures and methods
of state-of-the-art solutions to graph mining problems. These solutions are rigid, requiring
effort to adapt to different use cases even in related domains, and leave performance on the
table by neglecting techniques learned in other communities.

The response to these challenges has been the rise of programmable graph mining sys-
tems, all designed with the same philosophy. Each system begins with a well-known principle
from past systems research that addresses one or more of the scalability challenges posed
by graph mining, and combines it with a simple unifying model for the diverse set of graph

1

mining algorithms to develop a parallel graph mining engine. This forms the backend of the
system, which is wrapped with an application programming interface (API) on the frontend
to allow domain experts to implement their own graph mining applications. These systems
are an initial step towards feasibly executing large-scale graph mining workloads, but they
oversimplify graph mining applications in order to fit the interfaces of existing system design
paradigms. This approach is application-oblivious, rendering the user intent opaque to the
system and therefore impossible to leverage in efficiently executing graph mining workloads.

Application-Awareness. This thesis provides an alternative view on designing systems
that centres formal understanding of the applications being executed. Such a perspective
is application-aware, and opens avenues for optimizing execution based on application-level
insights. In particular, the knowledge silos of domain-specific graph mining communities
can be accessed, allowing the many techniques and optimizations to be applied, only given
a baseline understanding of application semantics. In other words, the ability of a general-
purpose graph mining system to optimize its execution is contingent on a sufficiently so-
phisticated unifying model for graph mining applications.

The thesis begins by formulating such a model of graph mining applications in Sec-
tion 2.2, formally defining graph mining applications as an aggregation ⊕ over the subgraphs
S of a data graph g. The formalisms surrounding each component of this model are then an-
alyzed in order to design novel application-aware systems and frameworks that aggressively
optimize their execution and provide greater efficiency, scalability, and fault tolerance than
is possible for an application-oblivious system. This is possible due to the transparency af-
forded by the formal model of graph mining applications. Application-aware design enables
integrating seemingly incompatible techniques from different communities, generalizing lim-
ited techniques to broader and broader classes of application, and developing brand new
constructs for reasoning about graph mining.

Specifically, this thesis applies the formal model in four ways:

(i) following observations on the difficulty specifying S in existing systems, a pattern-
based view of graph mining emerges based on the novel concept of extended sub-
graph isomorphism, allowing local constraints on subgraphs to be expressed with
well-defined, and transparent semantics (Chapter 4);

(ii) this pattern-based view motivates an application-aware graph mining system which
leverages well-known but difficult to integrate techniques for efficiently obtaining S as
matches of graph patterns in g (Chapter 5);

(iii) algebraic properties of subgraphs and user-defined aggregations are used to design
a generic middle-end optimization framework that automatically discovers more effi-
cient alternatives to a given set of input graph patterns while preserving application
correctness (Chapter 6);

2

(iv) leveraging the gap in cost between computing and verifying the results of subgraph
matching (the NP-complete problem underpinning graph mining) in order to develop
a novel distributed architecture with stronger fault tolerance guarantees and greater
scalability than existing systems (Chapter 7).

Next is a more detailed overview of these four instances of application-aware design.

Pattern Semantics. In instance (i), the thesis formalizes the semantics of local struc-
tural filters on subgraphs, as these are implemented in existing systems through opaque
user-defined functions (UDFs). A pattern-based approach is adopted, where the desired
subgraphs S can be thought of as matches of a set of pattern graphs in g. Since the existing
definition of matches (i.e., subgraph isomorphism) can only express the existence of edges,
and therefore does not obviate UDFs, we develop novel graph constructs anti-edge and anti-
vertex with formal semantics that, when added to patterns, enable expression of nuanced
constraints on the local structure of matches. These constructs make structural filters trans-
parent to underlying runtimes, unify the dichotomy between edge-based and vertex-based
exploration perpetuated by existing systems, integrate with existing techniques, and are
declarative (i.e., they do not rely on implementation details of the underlying system).

Pattern-Aware Graph Mining. In instance (ii), the thesis develops Peregrine, a
shared-memory general-purpose graph mining system that can be programmed with a mix-
ture of pattern semantics and user-defined functions. Peregrine leverages pattern seman-
tics to integrate and generalize a large suite of previously incompatible application-specific
techniques, delivering up to 737× faster execution time than the state-of-the-art distributed
graph mining system [77] with 8× fewer hardware resources. Implementing the state-of-the-
art shared-memory application-oblivious system design [146] on top of the Peregrine run-
time showed that the domain-specific techniques enabled by application-awareness account
for up to 42× speedup in execution time.

Generic Query Optimization. In instance (iii), we analyzed the performance of graph
mining systems and developed Subgraph Morphing in response, a middle-end query opti-
mization framework that integrates with any pattern-based graph mining engine. Subgraph
Morphing recognizes equivalent programs using the semantics of subgraph isomorphisms
and traverses the space of possible programs to select an efficient one, with no changes
to the system runtime and one additional application specification required from the user.
There is no single bottleneck in any given graph mining system across different workloads,
and performance characteristics vary wildly from application to application, so efficiency
of a given program is determined using the underlying system’s own internal optimizer.
Subgraph Morphing was integrated with 4 different systems, and improved execution
time by up to 34× when wrapping existing engines without changes to system code.

3

Byzantine Fault Tolerance Without Task Replication. In instance (iv), we de-
veloped OsirisBFT, a new distributed architecture that tolerates Byzantine faults (the
most difficult failure model, since faulty machines can act arbitrarily or even maliciously)
with stronger resiliency guarantees and greater performance and scalability than the state-
of-the-art architecture for distributed graph mining. Traditional approaches to Byzantine
fault tolerance replicate expensive graph mining tasks to ensure they are executed correctly,
but OsirisBFT uses pattern semantics to guarantee the results of tasks without replication
through lightweight verification. Compared to the traditional architecture, the application-
aware design yields up to 4× higher mining throughput while tolerating 2× more failures.
Furthermore, we demonstrate that the OsirisBFT architecture is applicable beyond graph
mining to other workloads such as robot motion planning and video analysis, with similar
improvements in performance and fault tolerance.

Contributions. This thesis uses application-aware design to develop novel systems, frame-
works, and techniques for more efficient, scalable, and fault tolerant graph mining, and in
the process generalizes and repurposes graph mining knowledge across domains and appli-
cations. The key contributions include:

1. Introduction of pattern-awareness as an application-aware design philosophy for graph
mining systems, a key driver in the performance of recent work in graph mining
systems [53, 50, 202, 47, 46] (Chapter 4 and Chapter 5).

2. Integration of previously incompatible application-specific techniques like symmetry
breaking and graph orientation (i.e., data vertex reordering). The obstacles to inte-
grating these techniques were resolved due to the formal semantics of extended sub-
graph isomorphism. These and other pattern-aware techniques contribute to orders-
of-magnitude execution time speedups over pattern-oblivious systems (Chapter 5).

3. The first system-agnostic query optimization framework, Subgraph Morphing, which
enabled previously intractable workloads (e.g., 4-motif counting on billion-scale graphs)
without requiring changes to system code. Subgraph Morphing accomplishes this
by generalizing combinatorial identities reserved for counting subgraphs to a broad
class of user-defined aggregations (Chapter 6).

4. A Byzantine fault tolerant distributed architecture OsirisBFT for processing task-
parallel applications (not only graph mining applications) on data streams that lever-
ages application semantics to avoid replicating expensive computations. Executing in
a fixed-size cluster, OsirisBFT can tolerate more faults without sacrificing safety
than any other existing approach, while making fewer assumptions on the nature of
failures in the cluster, and empirically demonstrating higher throughput (Chapter 7).

4

Roadmap. The remainder of the thesis is structured as follows. Next, Chapter 2 defines
the terminology used in this paper and defines a formal model for graph mining applications.
Application-oblivious graph mining systems are then analyzed according to this model in
Chapter 3. What follows are the four instances of application-aware design. Chapter 4 devel-
ops a model for understanding the structural aspects of graph mining applications through
the anti-edge and anti-vertex constructs alongside extended subgraph isomorphism. Chap-
ter 5 develops a novel parallel and programmable graph mining system, Peregrine, that
leverages extended subgraph isomorphism and sophisticated pattern analysis techniques
to efficiently and scalably execute graph mining applications. Chapter 6 carries forward
the pattern-centric approach to reason about substructural similarities between subgraphs,
giving rise to the Subgraph Morphing framework which automatically optimizes pattern-
based graph mining programs. Finally, OsirisBFT is presented in Chapter 7. OsirisBFT’s
distributed processing architecture exploits the algorithms at play in pattern-based graph
mining systems to tolerate more faults with fewer assumptions than traditional approaches
to Byzantine fault tolerance, all while delivering higher throughput. The thesis closes with
a brief literature review in Chapter 8 covering related work from the systems, databases,
and algorithms communities followed by concluding remarks in Chapter 9.

5

Chapter 2

Preliminaries

This chapter summarizes the prerequisite knowledge for understanding graph mining works
and clarifies the terminology used throughout this thesis (summarized in Table 2.1).

2.1 Terminology

Graphs. Given a graph g, we denote its vertices by V (g) and its edges by E(g). Vertices
and edges are uniquely identified by integer ids, and may also have labels, given by functions
Lg(v) for v ∈ V (g) and Wg(e) for e ∈ E(g). The neighbourhood or adjacency list of a vertex
v ∈ V (g) is written adj(v) = {(u, v) ∈ E(g)} ∪ {(v, u) ∈ E(g)}. A clique is a graph where
every pair of vertices is adjacent. For ease of exposition, this thesis uses simple, undirected
graphs unless specified otherwise, though most techniques presented apply naturally to more
general graph models. When the generalization for a technique is not trivial, it is described
in the appendices.

A subgraph of a graph g is a graph s such that E(s) ⊆ E(g) (and thus, V (s) ⊆ V (g)).
Unless specified otherwise, the term term subgraph in this thesis refers to a connected
subgraph, consisting of a single connected component. A subgraph s is vertex-induced if it
contains all edges between its vertices, i.e., it satisfies

∀u, v ∈ V (s), (u, v) ∈ E(g) =⇒ (u, v) ∈ E(s).

Otherwise, s is edge-induced. The works covered focus on simple, undirected, vertex-labeled
graphs, though their contributions apply to directed, edge-labeled, multigraphs with small
adjustments. For instance, the anti-vertex presented in Chapter 4 is generalized from simple
undirected graphs to the rich property graph model in Appendix A.1.2.

Subgraph Isomorphisms. Central to many graph mining applications is the subgraph
isomorphism problem. Given a data graph g and a pattern graph p, a subgraph isomorphism

6

a

b

c c

b

a b

a

c a

c

bb

c

ac

a

ba

b

c c

b

a b

a

c a

c

bb

c

ac

a

ba

b

c c

b

a b

a

c a

c

bb

c

ac

a

ba

b

c c

b

a b

a

c a

c

bb

c

ac

a

b a

b

c c

b

a b

a

c a

c

bb

c

ac

a

ba

b

c c

b

a b

a

c a

c

bb

c

ac

a

b

Identity Rotations Reflections

Figure 2.1: The 6 unique automorphisms of a triangle graph, obtained through the identity
transformation, clockwise or counter-clockwise rotation, or reflection around a vertex.

is an injective function ϕ : V (p) → V (g) satisfying the following:

∀(u, v) ∈ E(p), (ϕ(u), ϕ(v)) ∈ E(g),

∀v ∈ V (p), Lp(v) = Lg(ϕ(v)),

∀(u, v) ∈ E(p), Wp((u, v)) = Wg((ϕ(u), ϕ(v))).

The range of a subgraph isomorphism describes a subgraph of g that has the same struc-
ture as p (i.e., the subgraph is isomorphic to p). For convenience, this subgraph is sometimes
written ϕ(p). The literature gives many names to ϕ(p), including match, embedding, and
even simply subgraph. Some works apply the same terms to the subgraph isomorphism map-
ping instead. This thesis refers to ϕ(p) as a match, and sometimes abuses the term to also
mean the isomorphism (e.g., “computing matches of a pattern p in graph g” instead of
“computing subgraph isomorphisms of p into g”).

This abuse includes referring to vertices in a match using vertices in its domain. If m

is a match of p in g, then for a vertex v ∈ V (p), m(v) ∈ V (g) is the vertex mapped by v

in the subgraph isomorphism of m. It is also often convenient to write a subset of V (m)
in function notation: if V ′ ⊂ V (p), then m(V ′) ⊂ V (m) ⊆ V (g) is the set of vertices the
subgraph isomorphism of m maps to the vertices in V ′.

The subgraph isomorphism problem is intractable in general, since for arbitrary inputs
there are O(nk) possible matches, where k = |V (p)| and n = |V (g)|. This thesis refers to
the set of matches for a pattern p in a graph g as E(g, p).

Graph Isomorphisms and Automorphisms. When |V (g)| = |V (p)|, ϕ is a graph
isomorphism. Computing graph isomorphisms is thought to be computationally simpler
than subgraph isomorphism [189], and in practice it is efficient for small graphs [148, 117].

In the special case g = p, ϕ is called an automorphism. Automorphisms reassign the ids
of vertices and edges in a graph without changing the structure or labeling. Figure 2.1 shows
the 6 automorphisms of a triangle graph, corresponding to each of the ways the triangle
can be rotated or flipped to obtain a new assignment of ids. Intuitively, automorphisms are
different “views” of a graph. The set of automorphisms for a graph g is an equivalence class
called the automorphism group of g.

7

Definition Common Terms
Large graph being mined; one of its
edges/vertices

data graph, input graph, graph; data edge/ver-
tex

Graph in the domain of a subgraph iso-
morphism; one of its edges/vertices

pattern, query graph, template, subgraph, motif,
graphlet; pattern edge/vertex

Subgraph described by the range of a
subgraph isomorphism

match, embedding, instance, subgraph, pattern,
motif, graphlet

Subgraph that contains all edges be-
tween its vertices

vertex-induced, induced

Subgraph that may not contain all edges
between its vertices

edge-induced, non-induced

Measure of frequency in FSM frequency, support
Column in an MNI table MNI column, domain
Graph with k vertices where every pair
of vertices is adjacent

k-clique, Kk, complete graph on k vertices

Set of all unique graphs (up to isomor-
phism) with k vertices

k-motifs

Table 2.1: Terminology used in the literature.
This thesis uses the bolded terms.

This thesis abuses the term automorphism to refer both to a mapping ϕ as well as
to a representative of the automorphism group. The pattern of a subgraph s is a canoni-
cal representative p for the automorphism group of a graph that is isomorphic to s. Two
matches/subgraphs are duplicates if they are automorphic. Similarly, a set of unique match-
es/subgraphs is one where no pair of matches/subgraphs are automorphic. The set of all
unique matches for a pattern p in a graph g is written E∗(g, p).

2.2 Application Semantics

In this section we formalize a model for the semantics of graph mining applications consid-
ered in this thesis, and use it to describe several common existing workloads.

Definition 2.2.1 (Graph Mining Application Semantics). Let G be the set of all finite
graphs. This thesis defines a graph mining application on a graph g ∈ G as an aggregation
over a set of subgraphs S ⊆ Sg. Let R be an application-specific set representing graph
mining results. Then, an aggregation is a commutative monoid† ⟨R, ⊕⟩, where R is the
set of aggregation values, and ⊕ is called the aggregation operator. We model graph
mining applications as functions App : G → R which take a graph as input and perform an

†A commutative monoid ⟨R,⊕⟩ (abbreviated as simply R when ⊕ is apparent from context) consists of
a set R with an associative and commutative binary operator ⊕ : R × R → R, such that there exists an
identity element e ∈ R for which e ⊕ v = v for all v ∈ R. E.g., non-negative integers form a commutative
monoid under addition.

8

aggregation over some subset of its subgraphs. This can be expressed formally as

∀g ∈ G, ∃S ⊆ Sg, App(g) =
⨁︂
s∈S

ν(s) (2.1)

where ν : S → R is an application-specific function mapping subgraphs to aggregation
values.

This model captures the core workload in graph mining applications which dominates
execution time: exploring and aggregating subgraphs [205]. The set S is a set of interesting
subgraphs the application wishes to process. The function ν extracts valuable information
from each subgraph, such as its pattern or its vertex/edge ids, or simply yields the subgraph
unchanged. The aggregation operator combines each subgraph-specific value into one value
that can be analyzed by users. On the other hand, the model does not prescribe how
an application should be implemented, or how a graph mining system should enable a
given application. Eq. 2.1 also purposely excludes computations performed on the input
graph before mining, as well as additional analysis of the aggregation values after mining.
In this manner, important graph mining workloads can be represented concisely without
generalizing their semantics to the point of superficiality or overspecifying their semantics
by assuming implementation details.

2.2.1 Examples

Consider the following examples of graph mining applications whose semantics are modeled
by Eq. 2.1.

Example 2.2.1 (Subgraph Matching). In the subgraph matching application, the user is
interested in all matches for a target pattern p in data graph g. This application is a pure
example of the subgraph isomorphism problem, and there are many works focused solely
on efficient subgraph matching in various contexts [123, 172, 33, 102, 101, 190, 18, 125,
175, 191, 134]. Most commonly, the user is interested in edge-induced matches, but some
works consider vertex-induced matches. Subgraph matching is also called pattern matching,
subgraph querying, subgraph listing, or subgraph enumeration in the literature.

Here, S is the set of matches for the target pattern p, R is the set of all subsets of Sg, ν

is the identity function returning each match unchanged, and ⊕ is the set union operation.
If the set of matches is not necessary to maintain, e.g., the application simply performs
some computation on each match that does not produce any value, then ν can return an
empty set for every subgraph. Another common variation on subgraph matching is subgraph
counting, where only the number of matches is required. In subgraph counting, R is the
set of non-negative integers, ν maps each match to the integer 1, and ⊕ simply performs
addition.

9

Key-Value Aggregations. Example 2.2.1 shows simple aggregations that produce a
single value or set. Other applications produce a map of results, represented as key-value
aggregations by setting R = P({(k, r) : k ∈ K, r ∈ R})†, where K is an arbitrary set but
the set of values R has its own binary operator ⊕R such that ⟨R, ⊕R⟩ is a commutative
monoid. Then the aggregation operator ⊕ sums values A, B ∈ R with matching keys using
⊕R:

A ⊕ B = {(k, rA ⊕R rB) : (k, rA) ∈ A ∧ (k, rB) ∈ B}

∪ {(k, r) ∈ A : ̸ ∃v′(k, r′) ∈ B}

∪ {(k, r) ∈ B :̸ ∃v′(k, r′) ∈ A}.

Keys present in both A and B have their values summed using ⊕R, while keys only present
in one are unchanged. ⊕ and ⊕R are distinguished as the outer and inner aggregation
operators, respectively. Such aggregations are used in the next three examples.

Example 2.2.2 (k-Motif Counting). In k-motif counting, the user is interested in how
many matches in g correspond to each pattern with k vertices. This application is especially
important in bioinformatics [156, 220], and has been extensively studied in that commu-
nity [93, 141, 168, 9, 173, 139, 24, 196, 88]. Some works materialize the matches for the user
as well as counting them, some use combinatorial identities to efficiently count matches
without allowing the user to access them, and others only approximate the distribution.
Motif is a synonym for pattern, and is also sometimes referred to as a graphlet.

In the k-motif counting application, S is the set of all unique subgraphs of size k and
R is the powerset P({(p, n) : p is a k-motif, n ∈ Z≥0}), with addition as the inner binary
operator and ⊕ defined as above. Every subgraph s is mapped to (p, 1) by ν, where p is the
pattern of s.

Example 2.2.3 (Frequent Subgraph Mining). Frequent subgraph mining (FSM) seeks to
detect which patterns occur frequently in a data graph g (“subgraph” in FSM actually
refers to patterns, not matches or subgraphs of g) [82]. Classic works on FSM considered
the context of a graph database containing many graphs, where frequency referred to the
number of graphs in the database that contained a match for a given pattern. More recently,
and for the purposes of graph mining systems, FSM is executed on one large graph, where
frequency is not measured by the number of matches [82, 203, 182, 12, 104, 237, 31, 2],
because match counts are not anti-monotonic.. Anti-monotonicity means that if a pattern
of size k is infrequent, no pattern of size l > k will be frequent, and is essential to efficiently
compute FSM, since it allows pruning all subgraphs that contain a match for a smaller
infrequent pattern from the search space.

†For a set A, P(A) = {A′ ⊆ A} is the powerset of A, i.e., the set of all subsets of A. Note that the empty
set is a subset of any set.

10

The most commonly used frequency measure is Minimum Node Image (MNI) [37]. To
compute MNI for a pattern, a table is constructed where each column corresponds to a
pattern vertex and contains the set of all data vertices that correspond to it in some match.
MNI is the size of the smallest column in this table.

Eq. 2.1 models FSM on a graph g as follows. For a k-vertex pattern p, the set of MNI
tables can be formalized as Rk = {(V1, V2, . . . , Vk) : Vi ⊆ V (g)}. Two elements in R are
combined by taking the union of corresponding columns:

(V1, . . . , Vk) ⊕R (V ′
1 , . . . , V ′

k) = (V1 ∪ V ′
1 , . . . , Vk ∪ V ′

k).

Then finally the result set is R = P((p, r) : p is a graph ∧ ∃i ∈ N, r ∈ Ri). S is the set of
subgraphs that are isomorphic to a frequent pattern, and ν maps a subgraph s to the pair
(p, r) where p is the pattern of s and r is the MNI table where each vertex in s forms its
own column.

Other common workloads associate data vertices or edges with structural characteristics
such as match counts [108].

Example 2.2.4 (Local k-Clique Counting). Local k-clique counting records the number
of k-cliques each vertex in a data graph g participates in. In Eq. 2.1 this is formalized by
setting R = P({(v, c) : v ∈ V (g) ∧ c ∈ N}), with addition as the inner binary operator. The
relevant subgraphs are S = {s ∈ Sg : s is a k-clique}, which can be more concisely stated
as S = E∗(g, k-clique pattern).

These formalisms for graph mining applications enable critical discussion of existing
system designs in the following chapter.

11

Chapter 3

Application-Oblivious Graph
Mining Systems

This chapter contextualizes the work of this thesis within the graph mining systems litera-
ture.

3.1 Understanding Programmable Graph Mining Systems

Existing programmable graph mining systems were designed by combining well-known sys-
tems ideas (e.g., concurrent disk-backed task queues in G-Miner [45], relational joins [4] in
RStream [219]), or even entire systems (e.g., Giraph [23] in Arabesque [205], Spark [230]
in Fractal [77]), and building a graph mining abstraction to match. These graph mining
abstractions are typically thin wrappers around the processing model required by the un-
derlying systems techniques. For instance, Arabesque explores in breadth-first fashion by
extending one subgraph at a time due to its bulk-synchronous parallel [211] processing
model inherited from Giraph, which in turn inherited it from MapReduce [72].

This section sketches a high-level overview of the foundations of the graph mining sys-
tems literature. Three systems are discussed: the first programmable graph mining system
Arabesque [205], as well as the most recent two systems Fractal [77] and AutoMine [146].

3.1.1 Arabesque: General-Purpose Graph Mining

The first system to tackle programmable graph mining was Arabesque [205], which iden-
tified that existing graph processing systems are ill-suited to operations on patterns and
their matches. Specifically, there are two major obstacles to solving graph mining problems
on a traditional graph processing system: (a) graph processing systems typically expose
APIs that operate on individual vertices or edges at a time (i.e., users write small functions
which are applied to each vertex/edge over several iterations), while graph mining applica-
tions operate on matches, leading to awkward and buggy user programs that must build up
matches one vertex/edge at a time in ad-hoc fashion; and (b) since graph processing sys-

12

1 bool filter (match e) {
2 if (e. numVertices () == 3)
3 return e. numEdges () == 3;
4 else
5 return e. numVertices () < 3;
6 }
7 void process (match e) {
8 if (e. numVertices () == 3)
9 map(pattern (e), 1);

10 }
11 pair reduce (pattern key , int vals []) {
12 return pair(p, sum(vals));
13 }
14 void aggProcess (pattern key , int val) {
15 print (key , val);
16 }

(a) Filter-Process

1 int count = 0;
2 void vertexMap (vertex u) {
3 for (v in u.nbrs ()) {
4 vertex x[] = u.nbrs () ∩ v.nbrs ();
5 count += x.size ();
6 }
7 }
8 count /= 3;

(b) Think Like A Vertex

Figure 3.1: Triangle Counting programs in the Filter-Process [205] and TLV [140] program-
ming models.

tems are optimized for such vertex-centric and edge-centric programs, they cannot handle
the combinatorial explosion of intermediate state when exploring subgraphs of a graph. In
this section, we examine Arabesque’s design in detail and discuss its drawbacks.

Programming Model

Arabesque’s answer to the first obstacle is the “Think Like an Embedding” (TLE) paradigm
(inspired by “Think Like a Vertex” (TLV) in graph processing [140]) and associated filter-
process model, wherein the system iteratively generates larger matches and invokes user-
defined filter and process functions on them. Matches that pass the filter are processed
and then extended to larger matches. The program either operates on vertex-induced or
edge-induced matches. The set of initial matches is simply all vertices in the graph (or
edges, if edge-induced matches are desired). These user-defined functions (UDFs) also have
access to generic map-reduce style aggregations to support global computations, along with
filtering and processing callbacks to operate on aggregated data. Arabesque guarantees that
matches passed to each function are unique (i.e., no automorphisms of the same match are
processed). This programming model makes it simple to implement common graph mining
benchmarks in a few simple callbacks.

Example 3.1.1. Figure 3.1 shows how Triangle Counting is implemented in both Arabesque
and a TLV graph processing system. In Arabesque’s filter-process program (Figure 3.1a),
all matches that have greater than 3 vertices are filtered, as are those which have 3 vertices
but 2 edges. Thus leaving triangles (i.e., 3 vertices and 3 edges), as well as patterns with
2 or 1 vertices (i.e., single edges and single vertices) that can extend later into triangles.
If the user becomes interested in patterns with 4 vertices that contain a triangle, all they

13

Figure 3.2: Triangle counting in a small graph using the breadth-first processing model from
Arabesque [205]. Dashed lines represent barriers between supersteps, where matches from
the previous superstep are filtered, processed, and extended into the next superstep.

must do is change Line 5 to accept matches with less than 5 vertices, instead of those with
less than 3.

By contrast, in a TLV program (Figure 3.1b), the user-defined function must directly
explore the neighbourhood of each vertex and compute an intersection to find triangles.
Each triangle match will be encountered from each of its vertices, so the user must divide
the final count by 3. Hence, although the TLV program is shorter, it arguably requires more
expertise to implement, and must be changed completely if the user is interested in patterns
other than a triangle, since simply dividing the count would no longer give correct results.

Processing Model

The second obstacle (handling a combinatorial explosion of matches) is harder to overcome.
Arabesque is built on top of a TLV graph processing system, Giraph [23], which adopts
a bulk synchronous parallel [211] processing model (BSP). The computation proceeds one
superstep at a time, where a user-defined vertexMap function is applied to every vertex in
the data graph (or an edgeMap function is applied to every edge) before proceeding.

Arabesque builds on top of this abstraction, and uses the vertexMap or edgeMap func-
tions to iteratively generate larger vertex-induced or edge-induced matches, respectively,
and passes them to the filter-process functions. At superstep k, Arabesque filters invalid
matches from superstep k and processes the valid matches. Then, for each valid match,
all canonical (i.e., unique) extensions of the match with a vertex (or edge) are computed
for superstep k + 1. The computation terminates when there are no more matches. This
processing model is known as breadth-first exploration in the graph mining literature.

Example 3.1.2. Figure 3.2 shows how triangle counting on a small graph would be executed
in Arabesque, using vertex-induced matches. The set of matches at superstep 1 consists of
all vertices. These all pass the filter, and are extended into the set of all edges. These also
pass the filter, resulting in three size 3 matches. Two matches are for a triangle pattern,
while the remaining one is for a wedge pattern. The latter fails the filter because it only

14

has 2 edges (Line 3 in Figure 3.1a). Hence, the two triangles are counted and extended. At
superstep 4, all matches fail the filter, and hence in superstep 5 the computation ends.

Discussion

There are four major challenges arising from the design of Arabesque’s programming and
processing models. Subsequent general-purpose graph mining systems attempt to address
some or all of these topics, and several application-specific solutions have already addressed
them.
Challenge: User-Friendliness. While the filter-process model makes expressing aggre-
gations of matches easier compared to the TLV model, it is far from declarative. The main
difficulty in writing user programs for the filter-process model is that the user must consider
how the system will arrive at the final set of matches. In our triangle counting example,
despite only being interested in size 3 matches, both the filter and process functions must
also consider what to do when the input match is smaller than size 3, since Arabesque
invokes these functions at every iteration. This leads to the clunky logic in the example’s
filter function, where size 3 matches must be checked to ensure they are triangles, size 1
and 2 matches must be passed through, and size 4 matches must be filtered out.
Challenge: Wasted Computation. Another consequence of the filter-process model is
that the system is fundamentally unaware of which matches are interesting until after they
have been explored. Despite only wanting to process triangles in our example, the process
function is invoked on every vertex and every edge as well, only for the if-condition to fail.
Furthermore, computing the pattern of a match is an expensive graph isomorphism check,
even if the user knows explicitly which patterns they are interested in mining.
Challenge: State Explosion. Arabesque struggles with the combinatorial explosion prob-
lem in graph mining, which manifests as a memory bottleneck in the breadth-first explo-
ration model since all matches at the current superstep must be stored to be extended at
the next superstep. For instance, in the motif counting application, the Orkut graph [225]
yields 123 trillion matches at superstep 4, despite the graph containing only 117 million
edges.

To cope with such massive state, Arabesque developed the Over-approximating DAG
(ODAG), a data structure for aggressively compressing matches, trading space for time.
While the ODAG offers impressive compression factors (albeit, without any bounds or
guarantees), it suffers from heavy decompression costs that actually consume the majority
of CPU utilization in some applications.
Challenge: Load Imbalance. Breadth-first exploration leads to load imbalances between
workers. Each worker holds a set of matches which are extended every superstep. However,
due to the skewed nature of real-world graphs [49], some matches will contain high-degree
vertices and result in far more extensions than most matches which will comprise mainly

15

low-degree vertices. Hence, workers beginning with matches containing high-degree vertices
will have far more work to do than workers with low-degree matches.

Arabesque attempts to address this issue by gathering all matches at a leader node and
redistributing matches fairly across workers. However, this load balancing scheme is itself
a massive bottleneck, as all workers must synchronize after every superstep, contend for
bandwidth to send matches to the leader, and spend long amounts of time compressing and
decompressing matches into ODAGs.
Previous Solutions. It is important to note that these challenges were already solved by
several application-specific solutions which did not need to support a general programming
or processing model. For example, GraMi [82], a framework for frequent subgraph mining
(FSM), solved the problems of wasted computation and state explosion in the case of FSM.
It aggressively reuses previous results to prune its search space, guides its exploration using
information about which patterns were previously frequent, and only exploring a pattern’s
matches until the pattern can be guaranteed to be frequent. As a result, it explores a fraction
of the matches that Arabesque does. Similarly, there have been several works regarding
efficient motif counting [9, 141, 108, 173] which do not suffer from state explosion, load
imbalance, or wasted per-match computations because they use combinatorial identities to
quickly count matches without having to materialize them.

3.1.2 Fractal: Depth-First Graph Mining

Fractal moves away from the bulk synchronous parallel Giraph [23] backend used by Arabesque
to a more general Spark backend in order to overcome the state explosion problem in
Arabesque’s breadth-first exploration. Using Spark on the backend, Fractal is able to ex-
plore subgraphs in a depth-first manner, reducing the per-thread memory footprint for
t threads from O(|S|/t) in breadth-first exploration to just O(1) by having each thread
fully explore one subgraph at a time before moving on to another. In conjunction, Fractal
develops the fractoid model for defining graph traversals.

Finally, systems emerged that were able to tackle the state explosion problem in memory
with a small algorithmic tweak: abandoning breadth-first exploration and exploring in depth-
first manner instead. In a depth-first exploration, each thread only generates one match at a
time, extending it as far as possible before backtracking to a different match, thus completely
eliminating the state explosion problem. At the same time, other aspects of the system, like
user-friendliness, generality or load balancing are not necessarily sacrificed by this choice.

Fractal [77] is a distributed general-purpose graph mining system from the same group
as Arabesque, and makes improvements in addressing all but one of the main challenges of
graph mining. Aside from the switch from breadth-first to depth-first, Fractal’s processing
model is similar to Arabesque. Exploration begins from individual edges or vertices, which
are iteratively extended with either edges or vertices. Load imbalances are rectified through
work-stealing: workers can steal a portion of the edges or vertices that extend a given match.

16

1 let computation = g. vfractoid ()
2 . expand (3) // extend by 3 vertices
3 . filter (s -> s. nEdges == 3)
4 . aggregate (s -> map("", 1) ,
5 (n1 , n2) -> a + b);

(a) Triangle Counting

1 let T = FREQUENCY_THRESHOLD ;
2 // using edge fractoid
3 let computation = g. efractoid ()
4 . expand (1) // extend by 1 edge
5 . aggregate (s -> map(s. pattern () ,
6 mniTable (s)),
7 (a, b) -> merge (a, b))
8 . aggFilter (
9 (emb , key , val) -> val > T)

10 . explore (k); // loop operator

(b) FSM

Figure 3.3: Triangle Counting and FSM applications in Fractal [77].

Fractal has a programming model augments filter-process with the concept of fractoids,
which represent different methods for iteratively extending matches. Where Arabesque sup-
ported vertex-induced or edge-induced matches, and explored one vertex at a time or one
edge at a time based on the user’s choice, Fractal explicitly represents exploration strategies
in terms of vertex fractoids, edge fractoids, and pattern fractoids. Users choose which type
of fractoid to use, and chain together a series of primitives that defines the computation.
Then, Fractal programs can be conceptually represented by a string corresponding to this
chain of primitives (E for “extend”, F for “filter”, and A for “aggregate”). For example, Fig-
ure 3.3 shows how triangle counting and FSM are implemented in Fractal. Triangle counting
will be executed as “EEEFA”; three extensions, a filter, then an aggregation.

FSM is more complicated. Because FSM must aggregate all matches of a given size after
every extension to take advantage of anti-monotonicity, it seems fundamentally incompati-
ble with depth-first exploration. Fractal resolves this tension by restarting exploration after
an aggregation. Aggregation values are cached across these restarts, but matches them-
selves are lost and recomputed in depth-first manner each time. This is represented in the
program string by a dash. So FSM until maximum size 4 is executed as “EA-EFEA-EEFEA-
EEEFEA”. Edge matches are extended by one edge to obtain matches with 2 edges, then
aggregated. All matches are lost, so next, edge matches are extended by two edges to ob-
tain matches with 3 edges, but after the first extension matches are filtered based on the
previous iteration’s aggregation. This continues until the maximum size is reached or no
matches can be extended.

While vertex and edge fractoids correspond easily with vertex and edge exploration in
Arabesque, the pattern fractoid represents a new form of exploration. A pattern fractoid
requires a target pattern as input, and extends matches by one vertex at a time, but
automatically filters matches that cannot eventually result in a match for the target pattern.
This fractoid is used exclusively for the pattern matching application in Fractal.

In addition to the fractoid API, Fractal also provides access to an enumerator class that
controls how the system extends matches. The default enumerator looks at all neighbours of
a match, but users can override its methods for fine-grain control over the extension process.

17

For example, the paper implements a specialized algorithm for listing k-cliques [71] within
Fractal using the enumerator API, where extension candidates are generated by intersecting
adjacency lists of all vertices in the match.

Discussion

Fractal’s main contribution is the relatively simple switch to depth-first exploration, which
avoids the memory bottlenecks from Arabesque. However, this also leads to more wasted
computation than before in applications like FSM, as the matches must be recomputed after
every aggregation. In practice, it seems that this recomputation still outweighs the costs of
breadth-first exploration, as FSM on Fractal outperforms Arabesque and even the FSM-
specific system ScaleMine [2]. As we will see with pattern-based graph mining, however,
the wasted computation can be completely eliminated as well. In this sense, Fractal’s use
of pattern fractoids (or lack thereof) is a missed opportunity.

The other major contribution is the two-level programming model, which allows for
more declarative programs using fractoids, as well as greater control using the enumerator.
Fractoids remain a strong abstraction for expressing graph mining tasks, but they still
are not fully declarative for the same reasons that filter-process is not declarative. Both
triangle counting and FSM applications require users to think about how matches will be
constructed vertex by vertex or edge by edge.

3.1.3 AutoMine: Pattern-Based Graph Mining

Concurrently to the development of depth-first exploration by [77], AutoMine [146] intro-
duced pattern-based exploration, a radically different processing model that does not naïvely
extend matches, but constructs exactly the desired matches according to a static pattern
matching plan. The resulting programming and processing models are far simpler (though
also more restrictive) than Fractal or previous systems, while performance is much better.

AutoMine is motivated by two observations. First, common graph mining applications
involve computing the pattern of a match, and second, specialized pattern matching base-
lines are orders of magnitude faster than previous graph mining systems at computing the
matches for a given pattern. Putting these observations together, AutoMine proposes a
pattern-based graph mining model, where user programs consist only of a list of patterns
the user is interested in. Then, AutoMine generates efficient native code that matches these
input patterns in the data graph and returns their matches to the user.

Conceptually, the compilation process is simple. Given a pattern, AutoMine computes
a matching schedule, which dictates in what order vertices in the pattern are matched with
vertices in the data graph to obtain a match. Then, AutoMine uses this matching schedule
to generate a series of nested loops, one per pattern vertex, that iterate over candidate data
vertices for every pattern vertex. This models a depth-first backtracking search through the
space of matches for this pattern.

18

1 auto p = generateClique (3);
2 int n = count (g, p);

(a) User program.

1 int result = 0;
2 for (v in V (g)) {
3 for (u in v.nbrs ()) {
4 vertex x[] = v.nbrs () ∩ u.nbrs ();
5 x = subtract (x, {u, v});
6 for (w in x) {
7 result += 1;
8 }
9 }

10 }
11 result /= 3;

(b) Generated code executed by the backend.

Figure 3.4: Triangle counting application in AutoMine [146].

Figure 3.4b shows how a triangle counting program is compiled. The outermost loop
iterates over all vertices in the graph to obtain the first vertex in the triangle. The middle
loop iterates over the neighbours of the first vertex to obtain the second vertex, and the
innermost loop iterates over all vertices in the neighbourhoods of both the first and second
vertex, thereby obtaining the last vertex in the triangle.

Generating such code automatically is straightforward [123, 17]. For each pattern vertex
AutoMine checks the neighbours that arrive before it in the schedule. The candidates for
the pattern vertex are precisely the intersection of the adjacency lists of whichever data
vertices are matched to those neighbours. However, choosing a schedule significantly affects
performance. AutoMine uses an abstract probabilistic graph, where all pairs of vertices are
adjacent with equal probability, in order to model the efficiency of a given schedule, and
explores the space of all schedules to determine the minimal one.

Discussion

Pattern-based graph mining eliminates Arabesque’s memory bottlenecks and the wasted
computation from per-match filtering, and the compiling pattern programs avoids the over-
heads of dynamic runtimes in previous systems. But while pattern-based graph mining is a
powerful concept, it is difficult to judge it based on its treatment in this work. For instance,
“root symmetry” is presented as a novel optimization, but is simply a special case of sym-
metry breaking, first introduced by the bioinformatics community [93] and widely adopted
by pattern matching work in databases [123, 134, 17, 33, 101, 32, 102]. Similarly, AutoMine
presents an algorithm for computing the symmetries of a pattern that runs in O(n!) time,
whereas the problem is known to be fixed-parameter tractable, and there are available
open-source libraries for computing the symmetries, one of which is used by Arabesque for
computing the pattern of a match [117].

19

1 val cliques = g. vfractoid (). expand (1)
2 . filter (s ->
3 s. nEdgesAdded ==s.nVertices -1)
4 . explore (k)
5 . aggregate (s -> // defining ν
6 s. forEachVertex (v -> map(v, 1)),
7 (n1 , n2) -> n1+n2) // defining ⊕

(a) Fractal

1 auto p = generateClique (k);
2 vector <> cliques = match (g, p);
3 for (auto &s : cliques) {
4 if (isDuplicate (s)) break ;
5 for (auto v : s. vertices) {
6 aggregationStore [v] += 1;
7 }
8 }

(b) AutoMine

Figure 3.5: Local Clique Counting programs in Fractal and AutoMine. System functions are
highlighted blue.

3.2 Consequences of Application-Obliviousness

Such systems are application-oblivious, since they attempt to adapt graph mining seman-
tics into otherwise generic systems while ignoring nuances between different applications.
Programmable graph mining system frontends must allow users to specify S, ν, and ⟨R, ⊕⟩
from Eq. 2.1 in order to support diverse applications. However, because existing systems
were not designed with these application semantics in mind, there is considerable variation
in the interfaces for specifying these semantics, as well as backend support for efficiently
executing them. Specifically, different frontends afford different levels of understanding to
the underlying system backend, and backends have limited support for executing these
semantics natively.

Performance, scalability, and programmability issues often manifest in application-oblivious
systems as mismatches between the system’s internal view of an application and the applica-
tion’s true semantics as defined by Eq. 2.1. Thus, drawbacks of application-oblivious design
can be illustrated by relating the semantics of existing programmable graph mining systems
with the semantics of different graph mining applications. This section analyzes state-of-
the-art systems preceding Peregrine (developed in Chapter 5) in this manner, showing
how the issues discussed in the previous sections trace back to application-oblivious de-
sign choices. Consider Fractal [77] and AutoMine [146], two recent graph mining systems.
Figure 3.5 shows programs in Fractal [77] and AutoMine [146] for local k-clique counting.

Fractal. On Line 1 of Figure 3.5a, using vfractoid specifies that vertex-induced sub-
graphs are desired, and expand(1) specifies that new subgraphs should be produced by
expanding previous subgraphs by one vertex at a time. To avoid generating several auto-
morphic subgraphs from expansions, Fractal calls an internal isCanonical function on each
expanded subgraph and discards those which are not the canonical representative of their
automorphism group. The remaining subgraphs are then filtered on Line 3 with a user-
defined function that checks a sufficient property for a subgraph to be a clique. By calling
explore(k) on Line 4, the user specifies that the preceding traversal and filter should be

20

repeated k times. Finally, the unique k-clique matches that result can be passed to the
user-defined aggregate functions. On Line 6, each vertex in the match is mapped to 1, to
be later summed by the system into the local k-clique counts, and on Line 7 the user defines
the inner aggregation operator as addition.

Thus, the combination of fractoid logic, canonicality checking, the user-defined filter
function, and the final check in the user-defined aggregate function all come together to
define S ⊆ Sg. The calls to map from the user code define ν, and the aggregation operator
is defined by adding values.

There are two major points to notice. First is that even conceptually simple applications
require additional knowledge of the underlying system to implement. Consider the definition
of S as the set of k-cliques in g is split across 3 distinct regions of system and user code
(fractoid API, canonicality checks, and filter), because Fractal directly splices user code into
simple Spark queries. The user-defined filter function, for instance, uses the nEdgesAdded
property of the subgraph, which is directly tied to Fractal’s internal graph traversal imple-
mentation. Fractal stores the number of edges added to a subgraph when expanding by a
vertex, and in a clique the number of edges added will be equal to the remaining vertices.
In order to properly specify S, the user must reason about how Fractal traverses the graph
and at what point each user-defined function will be called.

Second, the crux of the application is opaque to the system. The user-defined (and
hence opaque) filter definition is what specifies cliques as the desired subgraphs, and
the check for k-cliques before aggregation also occurs in user code. Fractal’s backend is
left with only 2 pieces of actionable information: all processed subgraphs are unique and
all processed subgraphs have at most k vertices. This leaves few opportunities to optimize
execution based on the user application. Fractal does assume that the filter function
is antimonotonic, i.e., once a subgraph e is filtered out, no subgraph containing e will
pass the filter. This assumption allows Fractal executions to terminate without checking
every subgraph in Sg while maintaining equivalent semantics (though it renders any non-
antimonotonic applications difficult to implement, as non-antimonotonic filters have to be
implemented by the user within the aggregate UDF).

AutoMine. AutoMine has only one method for directly accessing subgraphs of the graph:
the match function that returns a set of matches for a pattern. On Line 1, the user specifies
a k-clique pattern and on Line 2 the call to match yields the k-clique matches in g. The
remaining semantics of the application must be specified fully in user code. The user checks
each clique to determine whether it is a canonical automorphism or a duplicate in order to
narrow down S = E∗(g, p). The unique matches must then be aggregated by the user, who
directly implements ν and ⊕.

Most graph mining applications are infeasible to execute on large data graphs in Au-
toMine without significant developer effort. Unlike Fractal which provides automatic dupli-

21

cate filtering and parallel aggregation utilities, AutoMine users must correctly and efficiently
eliminate duplicates and aggregate matches. Crucially, the user code must also cope with
the memory overheads of materializing the billions or trillions of k-clique matches that ex-
ist even in medium-sized graphs, and perform aggregations scalably. Requiring such effort
undermines the purpose of a general-purpose graph mining system.

Furthermore, AutoMine has no view of the application semantics beyond the pattern
passed as input to match. Since user programs interact little with system APIs, there is no
opportunity for AutoMine to analyze the underlying application and optimize its execution
accordingly. As a result, AutoMine is application-oblivious.

Other existing graph mining systems support the semantics of Eq. 2.1 in similar ways
(e.g., RStream [219] is designed similarly to Arabesque and Fractal, G-Miner [45] is similar
to AutoMine), and are therefore also application-oblivious. In the next chapter, the thesis
lays groundwork for application-aware graph mining by developing constructs for specifying
S that can unify any structural filters on subgraphs and their neighbourhoods with existing
subgraph isomorphism semantics.

22

Chapter 4

Using Patterns to Specify
Interesting Subgraphs

A key component of the graph mining application semantics given by Eq. 2.1 is the set
S of interesting subgraphs the application processes. Specifying S can be thought of as
filtering Sg based on either structural or non-structural properties of subgraphs. Structural
properties refer to the presence or absence of edges, labels on edges and vertices, as well
as the structure of the graph surrounding the subgraph. Non-structural properties are the
application-specific meaning given to a given structure. For example, being isomorphic to a
given pattern, being vertex-induced, possessing a given set of labels, or not being adjacent
to a given vertex are all structural properties of subgraphs, while the sum of a subgraph’s
integer labels or the frequency of its pattern is a non-structural property.

As illustrated in Chapter 3, previous systems specify S using a mixture of configuration
flags, user-defined functions, and system APIs to encode the set of desired subgraphs, re-
sulting in opaque user programs and wasted computation. Instead of forcing users to define
S in ad-hoc ways corresponding to the design of the underlying system, this thesis takes
a principled approach, proposing graph patterns as the primary abstraction for specifying
structural properties, including constraints on the edges, labels, and local neighbourhood
of desired subgraphs. Viewing graph mining from a pattern-based perspective offers several
benefits when designing application-aware systems.

1. Transparent. Patterns clearly describe subgraph structure without the need for opaque
user-defined functions. This allows systems that can interpret patterns to directly gen-
erate matches instead of exploring unnecessary subgraphs that end up being filtered
by user code.

2. Flexible. Patterns are a system-agnostic abstraction divorced from the processing
model of the underlying graph mining backend. A pattern does not prescribe how
the graph must be traversed to find its matches, it only describes the end result.

23

Thus, adopting patterns as the foundation for a system frontend affords complete
freedom in designing an efficient backend to explore matches.

3. Efficient. By specifying S with patterns instead of user-defined functions, graph min-
ing systems can exploit the well-established literature on fast subgraph matching
given pattern inputs. For instance, in previous graph mining systems like Fractal [77]
and AutoMine [146], indicating only subgraphs with a specific labeling are desired
user-defined filtering subgraphs based on their patterns, incurring a per-subgraph iso-
morphism check. On the other hand, the subgraph matching literature uses the labels
of the input graph pattern to guide its exploration, completely avoiding any subgraphs
with undesirable labels and thereby eliminating the need for a filter [102, 175, 101].

However, patterns currently cannot express many useful structural properties of sub-
graphs in S. The existing definition of subgraph isomorphism used by graph mining sys-
tems (and the broader graph mining and subgraph matching literatures) does not account
for other structural properties that are commonly used to distinguish desired subgraphs
in graph mining applications. Namely, subgraph isomorphism is only concerned with the
existence of edges, and cannot express the absence of edges. A common example of edge
absence in graph mining is the vertex-induced constraint on subgraphs, which requires that
all edges between the vertices of a subgraph to be present within the subgraph. Viewed
from the negated perspective, this means any pair of vertices in the subgraph which are
not adjacent must not be adjacent in the data graph: i.e., there is an absence of an edge.
Because this absence is not expressible in standard subgraph isomorphism, AutoMine [146]
only returns vertex-induced subgraphs, with no option for edge-induced, while other systems
choose between edge-induced and vertex-induced based on a configuration flag [205, 77].

To rectify these shortcomings, this chapter develops an extended definition of subgraph
isomorphism that augments patterns with two novel constructs, anti-edge and anti-vertex,
which encode the lack of an edge or vertex, respectively. Anti-edges and anti-vertices express
filters on the structures and neighbourhoods of matches according to well-defined semantics
that can be integrated with existing systems to increase application-awareness.

Notation. For clear exposition, we introduce notation to clearly distinguish anti-edges
and anti-vertices from standard vertices and edges. Where G is the set of all finite graphs,
let G⋆ ⊃ G also contain all finite graphs containing anti-vertices and/or anti-edges. Then
consider a pattern p ∈ G⋆. Anti-vertices are a proper subset of vertices written V −(p) ⊂
V (p), while the remaining standard vertices are written V +(p) = V (p) \ V −(p). It is also
convenient to distinguish edges with anti-vertex endpoints. Note that no edge ever has both
endpoints as anti-vertices. Write the set of edges with standard vertex endpoints as

EV +(p) = {(u, v) ∈ E(p) : u, v ∈ V +(p)},

24

and the set of edges with one anti-vertex endpoint as

EV −(p) = {(u, v) ∈ E(p) : u ∈ V −(p) ∨ v ∈ V −(p)}.

Then anti-edges are a proper subset of edges with standard vertex endpoints, E−(p) ⊂
EV +(p), and the remaining standard edges are written E+(p) = EV +(p) \ E−(p). As a
final piece of notation, the standard subgraph of p consisting of only standard vertices and
standard edges is written p+.

Overview. Section 4.1 and Section 4.2 introduce formal semantics for anti-edges and anti-
vertices, respectively. Then Section 4.3 defines extended subgraph isomorphism. Finally,
Section 4.4 concludes with a discussion on the impact of extended subgraph isomorphism
on application-awareness. For many of the same reasons that anti-edge and anti-vertex are
useful for graph mining, they are useful in graph databases and subgraph matching systems
and can be generalized. To demonstrate, Appendix A generalizes anti-vertex to different
graph models and subgraph matching definitions.

4.1 Anti-Edge: Concept and Semantics

This section develops the concept of the anti-edge. An anti-edge is a special edge indicating
non-adjacency of a pair of vertices in a match, i.e., expressing the absence of an edge. This
allows for local structural filters on subgraphs to be specified transparently using graph
patterns instead of configuration flags or user-defined code. Section 4.1.1 provides use cases
motivating the anti-edge construct, and Section 4.1.2 formalizes semantics for the anti-edge
constraint. Anti-edges in patterns are visualized by a dashed line connecting two vertices.

4.1.1 Absence of Edges

In this section, we present a motivating use case for structural filters encoding the absence
of edges in subgraphs.

Example 4.1.1. Consider the following Friend Recommendation use case. Link prediction
in social networks [137] is a common application of graph analytics. In a friendship graph for
a social network service, where vertices represent people and edges represent friendship, it
is desirable to recreate real-life associations between users as accurately as possible in order
to better target advertisements and other services. To this end, the service recommends
users who are not adjacent in the friendship graph, but who seem likely to be friends in
real life to connect on their platform. One way to measure this likelihood is by observing
the overlap between subgraphs representing incomplete friend groups where some pairs of
users are not adjacent but have friends in common [138].

25

Incomplete Friend Groups

KimAna

Jon Tia Jon

Ana Bill

Tia

KimAna

Bill Tia

Data Graph

KimAna

BillJon
Tia

Complete Friend Groups

Jon Tia

BillKim

Jon Bill

KimAna

Incomplete Friend Groups
KimAna

Jon Tia Jon

Ana Bill

Tia

KimAna

Bill Tia

Data Graph
KimAna

BillJon
Tia

Complete Friend Groups

Jon Tia

BillKim

Jon Bill

KimAna

(a) A social network service recommends friendship between non-
adjacent users who have common friends.

Incomplete Friend Groups

KimAna

Jon Tia Jon

Ana Bill

Tia

KimAna

Bill Tia

Data Graph

KimAna

BillJon
Tia

Complete Friend Groups

Jon Tia

BillKim

Jon Bill

KimAna

Incomplete Friend Groups
KimAna

Jon Tia Jon

Ana Bill

Tia

KimAna

Bill Tia

Data Graph
KimAna

BillJon
Tia

Complete Friend Groups

Jon Tia

BillKim

Jon Bill

KimAna

(b) Likely friend group pattern:
anti-edge denotes non-friends.

Figure 4.1: Friend recommendation use case.

Figure 4.1 shows a dense friendship graph, where Jon, Bill, and Kim are friends with
every other user. Ana and Tia are not friends with each other, but they are both friends with
Jon, Bill, and Kim. The pattern shown in Figure 4.1b captures established friend groups
with three users where at least one user has an additional friend not currently in the group.
Due to the anti-edge, cliques in the friendship graph are excluded from results, as there are
no missing links to be predicted. On the other hand, both tailed triangles and chordal cycle
patterns are included. In previous systems, these semantics can only be expressed through
a user-defined filter that checks subgraphs for the existence of edges.

4.1.2 Formal Anti-Edge Semantics

Anti-edges in a pattern encode constraints on the structure of its matches, specifying which
vertices should not be adjacent. Let g ∈ G be a graph and p ∈ G⋆ be a pattern. A match
m ∈ E(g, p+) matching the standard edges and vertices of p satisfies the anti-edge constraint
if and only if

∀(u, v) ∈ E−(p), (m(u), m(v)) ̸∈ E(g)

The two vertices connected by an anti-edge are called anti-adjacent. These semantics enable
complex structural filters to be expressed simply: if a match does not satisfy the anti-edge
constraint, it can be pruned from exploration.

Edge-Induced and Vertex-Induced Patterns. As discussed in Section 2.1, depending
on the mining use case, desired subgraphs are either edge-induced or vertex-induced. For

26

example, Frequent Subgraph Mining (FSM) relies on edge-induced subgraphs, whereas Motif
Counting requires vertex-induced subgraphs. Similarly, matches of a pattern can be thought
of as edge-induced or vertex-induced, depending on the existence of additional edges in the
graph.

Whereas previous systems presented a dichotomy between vertex-induced and edge-
induced exploration [205, 77], or only allowed one form of exploration [146], under extended
subgraph isomorphism the vertex-induced requirement is expressed directly through anti-
edges. Specifically, the following result shows how edge-induced and vertex-induced patterns
are related.

Theorem 4.1.1. Let g ∈ G be a graph. Let pE be a pattern without any anti-edges, and let
pV be a pattern with the same vertices and edges as pE, such that every pair of vertices in
pE that are not adjacent are anti-adjacent in pV . Then the vertex-induced matches of pE in
g are equal to the edge-induced matches of pV in g:

{s ∈ E⋆(g, pE) : s is vertex-induced} = {s ∈ E⋆(g, pV) : s is edge-induced}.

Proof. To prove equivalence of the two sets, we first show that every edge-induced match
of pV is a vertex-induced match of pE , and then we show that every vertex-induced match
of pE is an edge-induced match of pV .

Let m be an edge-induced match for pV . Observe that as pE and pV contain the same
edges and vertices, m is also a match for pE . By definition of pV , for any edge (u, v) ̸∈ E(pE),
there is an anti-edge constraint between u and v in pV . Since m is a match for pV , it satisfies
this anti-edge constraint, such that m(u) and m(v) are not adjacent in the data graph. This
means there is an edge between m(u) and m(v) if and only if (u, v) ∈ E(pE). Therefore, m

is a vertex-induced match of pE .
Conversely, let m be a vertex-induced match for pE . Since m is isomorphic to pE , it

contains all edges of pE . Furthermore, m is vertex-induced, so if a pair of pattern vertices
u1, u2 in pE are not adjacent, then the corresponding data vertices m(u1) and m(u2) are
not adjacent either. Hence, m satisfies the anti-edge constraint for u1, u2. As this holds for
all pairs of non-adjacent vertices in pE , m is also a match for pV .

Theorem 4.1.1 unifies edge-induced and vertex-induced exploration, such that no binary
choice between the two is necessary. Anti-edges can be added to graph patterns in order to
directly specify the desired subgraphs.

4.2 Anti-Vertex: Concept & Semantics

This section develops the concept of the anti-vertex. An anti-vertex is a vertex in the pattern
that indicates absence of a vertex in the resulting subgraph. Anti-vertices allow users to
express constraints on the neighbourhoods of subgraph vertices declaratively, simply by

27

p q

r t
p r

t u

r s

t u

p q

r u
q r

t u

p q

t u

Data Graph Non-Maximal 4-CliquesMaximal
4-Clique

q

u

r

t
p s

Fire HydrantSchool Business

FH3

FH1

Luke’s
DinerChilton

FH2

FH4

Starfleet
Academy

KFC

FH5

FH4

Starfleet
Academy

KFC

FH5

FH3 FH2

Luke’s
Diner

Chilton

FH1
Normative
Subgraph

Anomalous
Subgraph

Data
Graph

(a) The anomalous subgraph of interest is the one where the school and
the business are connected with two fire hydrants and not three.

(b) Anomaly pattern: third fire
hydrant marked as anti-vertex.

Figure 4.2: Anomaly detection use case.

FH3

FH1

Luke’s
DinerChilton

FH2

FH4

Hogwarts

KFC

FH5

p q

r t
p r

t u

r s

t u

p q

r u
q r

t u

p q

t u

Data Graph Non-Maximal 4-CliquesMaximal
4-Clique

FH4

Hogwarts

KFC

FH5

FH3 FH2

Luke’s
Diner

Chilton

FH1

q

u

r

t
p s

Normative
Subgraph

Anomalous
Subgraph

Fire HydrantSchool Business

Data
Graph

(a) Maximal cliques use case. Only clique r-s-t-u is a maximal 4-clique
since all other 4-cliques are part of larger 5-clique p-q-r-t-u.

(b) Maximal 4-clique pattern:
the anti-vertex filters 5-cliques.

Figure 4.3: Maximal cliques use case.

describing which vertices are undesirable. Section 4.2.1 provides use cases to motivate the
need for the anti-vertex construct, and Section 4.2 formalizes semantics for the anti-vertex
constraint.

4.2.1 Constraints on Match Neighbourhoods

In this section, we present motivating use cases that constrain the subgraphs of interest
based on their neighborhoods. These use cases can employ anti-vertices in the pattern to
declaratively specify the absence of vertices in a subgraph. To easily visualize an anti-vertex
in a pattern, anti-vertices are pictorially represented as vertices with dashed borders as
opposed to solid borders used for regular vertices.

Example 4.2.1. Consider the use cases below.

1. Anomaly Detection. Identifying anomalies in graph data [164] is crucial across various
domains. Certain anomalies are identified as subgraphs that have missing vertices from
a reference (normative or non-anomalous) subgraph [79]. Figure 4.2a shows an example
of a city planning scenario. One of the planning requirements is if there is a school and

28

a business close to each other, then there must be at least three fire hydrants nearby
that are useful for both locations. For the graph shown in Figure 4.2a, the subgraph with
Chilton and Luke’s Diner satisfies the allocation requirement because of fire hydrants FH1,
FH2 and FH3. However, the subgraph with Starfleet Academy and KFC is anomalous since
there are only two fire hydrants FH4 and FH5.

Finding subgraphs with exactly two fire hydrants is not straightforward. In a naïve
solution, the user first finds all subgraphs with two fire hydrants, then implements a
user-defined filter to check each subgraph for a third fire hydrant. Instead, the absence
of a third fire hydrant neighbor can be directly expressed using an anti-vertex. To find
anomalous subgraphs with two fire hydrants, a normative subgraph can easily be turned
into a pattern by marking a fire hydrant as an anti-vertex. Figure 4.2b shows the pattern
containing an anti-vertex that exactly returns the anomalous subgraph containing FH4,
FH5 without returning the normative subgraph involving FH1, FH2, FH3. The anti-vertex
(indicated by the dotted border) requires that any school and business matched by the
query do not have a third fire hydrant in their neighborhood. In this case, the anti-vertex
provides a declarative way to express a constraint on the shared neighborhood of nearby
schools and businesses.

2. Maximal Cliques. Finding and enumerating maximal cliques is a popular graph mining
problem, with applications in social network analysis, financial analysis, security and
biology [54]. In Figure 4.3a, the clique r-s-t-u is maximal, but the other cliques are
not maximal since they all can be extended into the larger clique p-q-r-t-u by adding
a vertex. Since the maximality constraint simply limits the vertices in cliques to not
have a common neighboring vertex, the absence of this common neighboring vertex can
be directly expressed using an anti-vertex. It suffices to express a clique of size k + 1
and mark one of the vertices as an anti-vertex. As shown in Figure 4.3b, the pattern
contains an anti-vertex connected to all the vertices of a 4-clique. This eliminates all
the non-maximal 4-cliques from the result set, while still returning the maximal r-s-t-u
clique.

3. Approximate Subgraph Matching. Approximate subgraph matching often allows optional
and forbidden vertices and edges [232] to provide a loose subgraph template for which
subgraphs are matched. As subgraphs get matched for approximate templates, identi-
fying which subgraphs result due to the vertices being optional requires adding a con-
straint for the vertex to be absent. Such a constraint indicating absence of vertices can
be achieved using anti-vertices.

4. Contrasting Quasi-Cliques. Recent research [13] on mining for multigraphs argues the
strength of finding collection of vertices that are dense in one graph but less connected
in a second graph. An interesting sub-case is mining contrasting quasi-cliques where the

29

sparser subgraph is fully imposed on a subset of vertices, i.e., remaining vertices are not
connected to the subgraph. Here, the isolated vertices from the rest of the subgraph can
be represented using anti-vertices.

The above examples showcase the need for easily expressing absence of vertex connec-
tions in the neighborhood of explored subgraphs. A well-defined anti-vertex construct would
also enable thorough reasoning about correctness as well as methodical exploration of useful
optimizations.

4.2.2 Formal Anti-Vertex Semantics

As demonstrated in Example 4.2.1, the anti-vertex is a declarative construct that allows
users to express constraints simply in terms of which results are not desired. Next, the
formal semantics of anti-vertices are discussed.

Denoting Vertex Neighbourhoods. To specify the anti-vertex constraint concisely, it
is convenient to use a shorthand for the vertices in the neighbourhood of a match vertex.
Let g and h be graphs. For v ∈ V (g), e ∈ E(h), u ∈ V (h), the (e, u)-neighbourhood of v is
the set of vertices in V (g) which contain the labels of u and are adjacent to v via edges like
e. Formally, we write the (e, u)-neighbourhood of v as

N(v, e, u) = {v′ ∈ V (g) : (v, v′) ∈ E(g)

∧ Wg(e) = Wg((v, v′))

∧ Lh(u) ⊆ Lg(v′)}.

Semantics. Anti-vertices encode an additional requirement on matches, namely that an
anti-vertex should not be possible to match. Suppose m is a subgraph matching all edges
and standard vertices of a pattern p ∈ G⋆. Let C : V −(p) → P(V (g)) be a function which
returns the set of data vertices that can be mapped to by m from a query anti-vertex. The
match m is valid only if

∀u ∈ V −(p), C(u) = ∅.

Hence, an anti-vertex will invalidate a match if there are vertices in the data graph which
can be mapped to it.

The definition of C depends on the underlying subgraph matching semantics (homo-
morphism, no-repeated-edge, isomorphism). To ensure the semantics of anti-vertices is con-
sistent with the matching semantics, we define C by adhering to the requirements on m

which allow or disallow multiple different pattern vertices/edges to be mapped to the same
vertices/edges. Here, we use isomorphism semantics as they are most pertinent for graph
mining.

30

Let p be a pattern, g be the data graph, and m be a match for p in g. In isomorphism
semantics, m must be injective with respect to both edges and vertices, with no repetition.
Hence, data vertices already mapped to by m (and implicitly, the edges incident on those
vertices) cannot fulfill the anti-vertex requirement to invalidate the match. C is defined as
follows.

C(u) =
⋂︂

v:(u,v)∈E+(p)
N(m(v), (u, v), u) \ m(V (p))

Applicability. These semantics are system-agnostic, and can be adapted to different
matching semantics, graph models, and even workloads. Appendix A.1.1 defines C for ho-
momorphism and no-repeated-edge matching semantics, and generalization of anti-vertex
to the property graph model can be found in Appendix A.1.2. Finally, Appendix A.2 in-
tegrates anti-vertex with the popular Cypher [86] query language commonly used in graph
database management systems [161].

4.3 Extended Subgraph Isomorphism

With formal semantics for anti-edge and anti-vertex, this section extends the notion of
subgraph isomorphism to encompass structural filters and neighbourhood constraints.

For graphs p ∈ G⋆, g ∈ G, an extended subgraph isomorphism ϕ⋆ : V (p) → V (g) is a
subgraph isomorphism that preserves anti-edge and anti-vertex constraints. Formally, an
extended subgraph isomorphism ϕ⋆ satisfies the following properties:

ϕ⋆(p+) ∈ E(g+, p+),

∀(u, v) ∈ E−(p), (ϕ⋆(u), ϕ⋆(v)) ̸∈ E(g),

∀u ∈ V −(p), C(u) = ∅.

The first property states that every extended subgraph isomorphism is also a standard sub-
graph isomorphism from p+ to g+, i.e., it produces a match of p+ in g+. The latter properties
enforce that the match generated by ϕ⋆ meets the anti-vertex and anti-edge constraints de-
veloped earlier. The set of matches obtained through extended subgraph isomorphisms is
E⋆(g, p) ⊆ E(g, p+).

Automorphisms. Since a match m ∈ E⋆(g, p) is a subgraph of g, which has no anti-edges
or anti-vertices, its automorphisms are as defined in Section 2.1. On the other hand, it is
important to note that not every automorphism of m is necessarily a match of p under
extended subgraph isomorphism. The set of unique matches for p in g under extended
subgraph isomorphism is written E∗

⋆ (g, p) ⊆ E⋆(g, p) and consists of one representative per
automorphism group contained in E⋆(g, p).

31

4.4 Conclusion

This chapter proposed formal semantics for using patterns to encode constraints on the
local structure and neighbourhood of subgraphs, in the form of the anti-edge and anti-
vertex constructs. Anti-edge and anti-vertex are declarative, i.e., they are agnostic to any
given system or algorithm, describing the behaviour of filters without prescribing how the
filters must be enforced by a system backend. Anti-edges resolve the tension between edge-
induced and vertex-induced exploration as separate execution modes in previous systems,
because vertex-induced subgraphs are matches of patterns where every pair of vertices is
either adjacent or anti-adjacent. Therefore, a system that is aware of anti-edges only needs
one execution mode to explore edge-induced and vertex-induced subgraphs. Meanwhile,
anti-vertices enable reasoning about the neighbourhoods of matches without requiring user
code to manually inspect adjacency lists of match vertices.

By supporting the extended definition of subgraph isomorphism incorporating anti-edges
and anti-vertices, system backends become more application-aware than previously possi-
ble. Application-specific structural properties of desired subgraphs hitherto implemented in
opaque user-defined functions become transparent, facilitating the development of novel op-
timizations as well as reuse of existing research on subgraph matching. Developing constructs
and semantics for expressing non-structural properties or non-local structural properties of
subgraphs, such as constraints on matches beyond their immediate neighbourhoods, are left
for future work.

In the next chapter, the thesis applies the application-aware design philosophy, including
extended subgraph isomorphism semantics, to develop an efficient graph mining system,
Peregrine.

32

Chapter 5

Peregrine: Application Semantics
in Pattern-Based Systems

As discussed in Chapter 3, at the heart of existing graph mining systems is an exploration
engine that exhaustively searches subgraphs of the graph, and a series of filters that prune
the search space to continue exploration for only those subgraphs that are of interest (e.g.,
ones that match a specific pattern) and are unique (to avoid redundancies coming from
structural symmetries). The exploration happens in a step-by-step fashion where small sub-
graphs are iteratively extended based on their connections in the graph. As these subgraphs
are explored, they are verified via canonicality checks to guarantee uniqueness, and are ana-
lyzed via isomorphism computations to understand their structure (or pattern). After that,
the subgraphs are either pruned out because they don’t match the pattern of interest, or
forwarded down the pipeline where their information is aggregated at the pattern level.

While such an exploration process is general enough to compute different mining use
cases including Frequent Subgraph Mining and Motif Counting, we observe that it remains
largely oblivious to the patterns that are being mined. Hence, state-of-the-art graph mining
systems face three main issues, as described next: (1) These systems perform a large number
of unnecessary computations; specifically, every subgraph explored from the graph, even in
intermediate steps, is processed to ensure canonicality, and is analyzed to either extract
its pattern or to verify whether it is isomorphic to another pattern. Since the exploration
space for graph mining use cases is very large, performing those computations on every
explored subgraph severely limits the performance of these systems. (2) The exhaustive
exploration in these systems ends up generating a large amount of intermediate subgraphs
that need to be held (either in memory or on disk) so that they can be extended. While
systems based on breadth-first exploration [205, 219] demand high memory capacity, other
systems like Fractal [77] and AutoMine [146] use guided exploration strategies to reduce this
impact; however, because they are not fully pattern-aware, they process a large number of
intermediate subgraphs which severely limits their scalability as graphs grow large. (3)
The programming model in these systems is strongly tied to the underlying exploration

33

Arabesque Fractal G-Miner RStream PRG-U
Peregrine 2-1317× 1.1-737× 3-131× 2-2016× 2-42×

Table 5.1: Peregrine performance summary. PRG-U indicates Peregrine without sym-
metry breaking, to model systems that are not fully pattern-aware (e.g., AutoMine).

strategy, which makes it difficult for domain experts to express complex mining use cases. For
example, subgraphs containing certain pairs of strictly disconnected vertices (i.e., absence
of edges) are useful for providing recommendations based on missing edges; mining such
subgraphs with constraints on their substructure cannot be directly expressed in any of the
existing systems.

In this chapter, we take a ‘pattern-first’ approach towards building an efficient, application-
aware graph mining system. We develop Peregrine†, a pattern-aware graph mining system
that directly explores the subgraphs of interest while avoiding exploration of unnecessary
subgraphs, and simultaneously bypassing expensive computations (isomorphism and canon-
icality checks) throughout the mining process. Peregrine incorporates a pattern-based
programming model that enables easier expression of complex graph mining use cases, and
reveals patterns of interest to the underlying system. Using the pattern information, Pere-
grine efficiently mines relevant subgraphs by performing two key steps. First, it analyzes
the patterns to be mined in order to understand their substructures and to generate an
exploration plan describing how to efficiently find those patterns. And then, it explores the
data graph using the exploration plan to guide its search and extract the subgraphs back
to user space.

Our pattern-based programming model treats graph patterns as first class constructs: it
provides basic mechanisms to load, generate and modify patterns along with interfaces to
query patterns in the data graph. Furthermore, Peregrine supports the extended subgraph
isomorphism semantics introduced in Chapter 4 to express advanced structural constraints
on patterns to be matched. This allows users to directly operate on patterns and express
their analysis as ‘pattern programs’ on Peregrine. Moreover, it enables Peregrine to
extract the semantics of patterns which it uses to generate efficient exploration plans for its
pattern-aware processing model.

We rely on theoretical foundations from existing subgraph matching research [93, 33] to
generate our exploration plans. Since Peregrine directly finds the subgraphs of interest, it
does not incur additional processing over those subgraphs throughout its exploration pro-
cess; this directly results in much lesser computation compared to the state-of-the-art graph
mining systems. Moreover, Peregrine does not maintain intermediate partial subgraphs
in memory, resulting in much lesser memory consumption compared to other systems.

†Peregrine source code: https://github.com/pdclab/peregrine

34

1

Input	Graph	G

2

34

Labels	:

3

3

3 4

23

1 _

+

_

3 4 1 _

1

1

1 3

41

2

+

+

+

1 2 3 +

1 3 2 _

1 3 4 +

1 4 3 _

1 2

3

1

34

Step	1 Step	2 Step	3

+

+

+ :	Canonical

:	 Redundant
(Non-Canonical)

_

Figure 5.1: Step-by-step exploration in graph mining systems starting at vertex 1 and vertex
3. In total, 13 partial matches get explored and 13 canonicality checks are performed that
prune out 5 partial matches. Isomorphism checks are performed on the remaining 8 matches
for applications like FSM.

Peregrine runs on a single machine and is highly concurrent. We demonstrate the ef-
ficacy of Peregrine by evaluating it on several graph mining use cases including frequent
subgraph mining, motif counting, clique finding, pattern matching (with and without struc-
tural constraints), and existence queries. Our evaluation on real-world graphs shows that
Peregrine running on a single 16-core machine outperforms state-of-the-art distributed
graph mining systems including Arabesque [205], Fractal [77] and G-Miner [45] running on
a cluster with eight 16-core machines; and significantly outperforms RStream [219] run-
ning on the same machine. Furthermore, Peregrine could easily scale to large graphs and
complex mining tasks which could not be handled by other systems. Table 5.1 summarizes
Peregrine’s performance.

5.1 Issues with Graph Mining Systems

While several graph mining systems have been developed [205, 77, 45, 219, 146], they are
not pattern-aware. Hence, they demand high computation power and require large memory
(or storage) capacity, while also lacking the ability to easily express mining programs at a
high level.

5.1.1 Performance

(A) High Computation Demand. Graph mining systems explore subgraphs in a step-
by-step fashion by starting with an edge and iteratively extending it depending on the
structure of the data graph. Since they do not analyze the structure of the pattern to
guide their exploration, they perform a large number of: (a) unnecessary explorations; (b)
canonicality checks; and, (c) isomorphism checks.

35

Figure 5.1 shows an example of step-by-step exploration starting from vertex 1 and ver-
tex 3. In step 1, both the vertices get extended generating 6 partial matches each of size 1
(edges). These are tested for canonicality which prunes out (3, 1) and (3, 2) (non-canonical
matches are marked with −). For applications like FSM, isomorphism checks are performed
on each of the canonical matches to identify their structure and compute metrics. Then,
the remaining 4 matches progress to the next step and the entire process repeats. While
explorations get pruned via both canonicality and isomorphism checks, every valid partial
match is extended to multiple matches which may no longer be valid; generation of interme-
diate matches which do not result into valid final matches is unnecessary. Furthermore, all
intermediate partial matches (unnecessary and valid matches) are operated upon to identify
their structure (i.e., isomorphism check) and to verify their uniqueness (i.e., canonicality
check). In our example, 13 intermediate matches are generated, 5 of which are unnecessary;
13 canonicality checks and 8 isomorphism checks are performed. If these checks are not
performed at every step (as done in Fractal [77] by delaying its filter step), a massive
amount of partial and complete matches that do not contribute to final result would get
generated.

We verified the above behavior by profiling graph mining systems on clique counting
and motif counting applications. As shown in Figure 5.2a and Figure 5.2b, on Patents [100]
(a real-world graph dataset), RStream [219] and Arabesque [205] generate over a billion
partial matches for clique counting while the total number of cliques is only ∼3.5M (∼99.7%
matches were unnecessary); similarly for motif counting, RStream generates over 40 billion
partial matches (∼99.2% unnecessary) and Arabesque generates over 685 million partial
matches (∼52% unnecessary). They also perform a large number (hundreds of millions to
billions) of canonicality checks and isomorphism checks. Since Fractal [77] explores in depth-
first fashion, its numbers are better than RStream and Arabesque; however, they are still
very high.

(B) High Memory Demand. Graph mining systems often hold massive amounts of
(partial and complete) matches in memory and/or in external storage. Systems based on
step-by-step exploration require valid partial matches so that they can be extended in
subsequent steps; the total size (in bytes) required by all matches (partial and complete)
quickly grows (often beyond main memory capacity) as the size of the pattern or data
graph increases. Such a memory demand is lower in DFS-based exploration (as done in
Fractal [77]). For clique and motif counting in Figure 5.2, Arabesque consumes ∼101GB
main memory while Fractal requires ∼32GB memory.

5.1.2 Programmability

Programming in graph mining systems is done at vertex and edge level, with semantics
of constructing the required matches defined explicitly by user’s mining program. This

36

System Total Canonicality Isomorphism
Matches Computations Computations

RStream 1.2B (342×) 33.0M 0
Arabesque 1.4B (400×) 1.4B 3.5M

Fractal 659.0M (188×) 599.6M 0

(a) Profiling results for 4-Clique Counting on Patents [100] which contains ∼3.5M cliques of size 4.
Isomorphism counts are 0 for RStream and Fractal due to their native support for clique computation.

System Total Canonicality Isomorphism
Matches Computations Computations

RStream 40.1B (125×) 40.1B 343.3M
Arabesque 685.8M (2.1×) 685.8M 320.7M

Fractal 665.6M (2.1×) 649.1M 320.7M

(b) Profiling results for 3-Motif Counting on Patents [100] which contains ∼320M 3-sized motifs.

Figure 5.2: Number of matches explored (partial and full), canonicality checks performed,
and isomorphism checks performed by RStream [219], Arabesque [205] and Fractal [77].
Numbers in brackets indicate the magnitude of matches explored relative to result size.

means, mining programs expressed in those systems contain the logic for: (a) validating
partial and complete matches; (b) extending matches via edges and/or vertices; and, (c)
processing the final valid matches. As the size of subgraph structure to be mined grows,
the complexity of validating partial matches increases, making mining programs difficult
to write. For example, the multiplicity algorithm to avoid over-counting in AutoMine [146]
cannot be used if the user wants to enumerate patterns, which leaves the responsibility
of identifying unique matches to the user. Furthermore, complicated structural constraints
beyond the presence of vertices, edges and labels cannot be easily expressed in any of the
existing systems.

5.2 Overview of Peregrine

We develop a pattern-aware graph mining system that directly finds subgraphs of interest
without exploring unnecessary matches while simultaneously avoiding expensive isomor-
phism and canonicality checks throughout the mining process. We do so by designing a
pattern-based programming model that treats graph patterns as first class constructs, and
by developing a processing model that uses the pattern’s substructure to guide the explo-
ration process.

Pattern-based Programming. In Peregrine, graph mining tasks are directly ex-
pressed in terms of subgraph structures (i.e., graph patterns). Our pattern-aware program-
ming model allows declaring (statically and dynamically generated) patterns, modifying
patterns, and performing user-defined operations over matches explored by the runtime.
This allows concisely expressing mining programs by abstracting out the underlying run-

37

time details, and focusing only on the substructures to be explored. Moreover, we introduce
two novel abstractions, anti-edges and anti-vertices: an anti-edge enforces strict disconnec-
tion between two vertices in the match whereas an anti-vertex captures strict absence of a
common neighbour among vertices in the match. These abstractions allow users to easily
express advanced structural constraints on patterns to be mined.

Automatic Generation of Exploration Plan. With patterns of interest directly ex-
pressed, Peregrine analyzes the patterns and computes an exploration plan which is later
used to guide the exploration in the data graph. Specifically, the pattern is first analyzed to
eliminate symmetries within itself so that expensive canonicality checks during exploration
can be avoided. Then the pattern is reduced to its core substructure that enables identifying
matches using simple graph traversals and adjacency list intersection operations without
performing explicit isomorphism checks.

Guided Pattern Exploration. After the exploration plan is generated, Peregrine
starts the exploration process using our pattern-aware processing model. The exploration
process matches the core substructure of the pattern to generate partial matches using
recursive graph traversals in the data graph. As partial matches are generated, they are
extended to form final complete matches by intersecting the adjacency lists of vertices in
the partial matches. Since the entire exploration is guided by the plan generated from
the pattern of interest, the exploration does not require intermediate isomorphism and
canonicality checks for any of the partial and complete matches that it generates. This
reduces the amount of computation done in Peregrine compared to state-of-the-art graph
mining systems. Moreover, since matches are recursively explored and instantly extended to
generate complete final results, partial state is not maintained in memory throughout the
exploration process which significantly reduces the memory requirement for Peregrine.

Finally, we reduce load imbalance in Peregrine by enforcing a strict matching order
based on vertex degrees. Furthermore, we incorporate on-the-fly aggregation and early ter-
mination features to provide global updates as mining progresses so that exploration can
be stopped once the conditions required to compute final results are met.

5.3 Peregrine Programming Model

Since graph mining fundamentally involves finding subgraphs that satisfy certain structural
properties, we design our programming model around graph patterns as first class constructs.
This allows users to easily express the subgraph structures of interest, without worrying
about the underlying mechanisms of how to explore the graph and find those structures.
With such a declarative style of expressing patterns, Peregrine enables users to program
complex mining queries as operations over the matches. The clear separation of what to

38

[L1] Set < Pattern > loadPatterns (string filename);
[G1] Set < Pattern > generateAllEdgeInduced (int size);
[G2] Set < Pattern > generateAllVertexInduced (int size);
[S1] Pattern generateClique (int size);
[S2] Pattern generateStar (int size);
[S3] Pattern generateChain (int size);
[C1] Set < Pattern > extendByEdge (Set < Pattern > patterns);
[C2] Set < Pattern > extendByVertex (Set < Pattern > patterns);

class Pattern {
Set <Vertex > getNeighbours (Vertex u);
Label getLabel (Vertex u);
bool areAdjacent (Vertex src , Vertex dst);
bool areAntiAdjacent (Vertex src , Vertex dst);
void addEdge (Vertex src , Vertex dst);
void addAntiEdge (Vertex src , Vertex dst);
void removeEdge (Vertex src , Vertex dst);
void markAntiVertex (vertex u);
void addLabel (Vertex u, Label l);
. . .

};

Figure 5.3: Peregrine Pattern Interface.

find and what to do with the results helps users to quickly reason about correctness of their
mining logic, and develop advanced mining-based analytics.

We first present how patterns are directly expressed in Peregrine, and then show how
common graph mining use cases can be programmed with patterns in Peregrine.

5.3.1 Peregrine Patterns

Figure 5.3 shows our API to directly express, construct and modify connected graph pat-
terns. Patterns can be constructed statically and loaded using [L1], or can be constructed
dynamically [G1-G2, C1-C2, S1-S3]. [G1] and [G2] generate all unique patterns that
can be induced by certain number of edges and vertices respectively. [S1-S3] generate
special well-known patterns. [C1-C2] take a group of patterns as input, and extend one
of them by an edge or a vertex, to return all of the unique new patterns that result from
these extensions. This allows constructing patterns step-by-step which is useful to perform
guided exploration. The Pattern class provides a standard interface to access and modify
the pattern graph structure.

In most common applications, the edges and vertices in the pattern graph are sufficient
to specify S. For advanced mining use cases that require structural constraints within the
pattern, Peregrine supports adding anti-edges and anti-vertices to patterns for extended
subgraph isomorphism semantics from Chapter 4. Consequently, due to Theorem 4.1.1,
our pattern-based programming doesn’t need to separately define edge-induced and vertex-
induced exploration strategies, as done in pattern-unaware systems [205, 77, 219].

The next section discusses non-structural constraints and operations on matches, which
are handled outside of the pattern graph in a user-defined function.

39

void updateSupport (Match m) { mapPattern (m. getDomain ()); }
bool isFrequent (Pattern p, Domain d) {

return (d[p]. support () >= threshold);
}
DataGraph g = loadGraph (" labeledInput . graph ");
Set < Pattern > patterns = generateAllEdgeInduced (2);
while (patterns not empty) {

Map < Pattern , Domain > results = match (g, patterns , updateSupport);
Set < Pattern > frequentPatterns = results . filter (isFrequent).keys ();
patterns = extendByEdge (frequentPatterns);

}

(a) Frequent Subgraph Mining

int numTriplets = 0;
void countAndCheck (Match m) {

int numTriangles = loadAggregatedValue (m);
if (numTriangles *3/ numTriplets > bound)

stopExploration ();
else

mapPattern (m, 1);
}

DataGraph g = loadGraph (" input . graph ");
Pattern wedge = generateStar (3);
numTriplets = 2* count (g, wedge);

Pattern triangle = generateClique (3);
Map < Pattern , int > result = match (g, triangle , countAndCheck);

(b) Global Clustering Coefficient Bound

DataGraph g = loadGraph (" input . graph ");
void output (Match m) { write (m); }
Pattern p = loadPattern (" pattern .txt");
match (g, p, output);

(c) Subgraph Matching

DataGraph g = loadGraph (" input . graph ");
Pattern p =

generateClique (desiredSize);
int result = count (g, p);

(d) Clique Counting

DataGraph g = loadGraph (" input . graph ");
Set < Pattern > patterns = generateAllVertexInduced (size);
Map < Pattern , int > result = count (g, patterns);

(e) Motif Counting

void found (Match m) {
mapPattern (m, True);
stopExploration ();

}
DataGraph g = loadGraph (" input . graph ");
Pattern p = generateClique (desiredSize);
Map < Pattern , bool > result = match (g, p, found);

(f) Clique Existence

Figure 5.4: Graph mining use cases in Peregrine’s pattern-aware programming model.

40

5.3.2 Pattern-Aware Mining Programs in Peregrine

Figure 5.4 shows Peregrine programs for motif counting, frequent subgraph mining (FSM),
clique counting, pattern matching, an existence query for global clustering coefficient bound,
and an existence query for k-sized clique. All the programs first express patterns by dynam-
ically generating them or by loading them from external source. Then they invoke Pere-
grine engine to find (match()) and process matches of those patterns. For every match
for the pattern, user-defined function (e.g., updateSupport(), countAndCheck(), found(),
etc.) gets invoked to perform desired analysis. The count() function is a syntactic sugar and
is equivalent to match() with a function that increments a counter. Most of the programs
are straightforward; we discuss FSM and existence queries in more detail.

FSM: Anti-Monotonicity & Label Discovery

FSM leverages anti-monotonicity in support measures (discussed in Section 2.2.1). Pere-
grine natively provides MNI support computation where it internally constructs the do-
main of patterns, i.e., a table mapping vertices in g to those in p (similar to [2]). After
exploration ends for a single iteration, the support measure maintained by Peregrine can
be directly used to prune infrequent patterns using a threshold, as shown in Figure 5.4a, and
only the remaining frequent patterns are then programmatically extended to be explored.

Before finding the first small frequent labeled patterns, the FSM program has no infor-
mation about which labelings are frequent. Peregrine provides dynamic label discovery
by starting with unlabeled (or partially labeled) patterns as input and returning labeled
matches. Hence, the FSM program in Figure 5.4a first starts with unlabeled patterns of size
2, and discovers frequent labeled patterns. It then iteratively extends the frequent labeled
patterns with unlabeled vertices to discover frequent labeled patterns of larger sizes.

Existence Queries

Existence queries allow quickly verifying whether certain structural properties hold within
a given data graph. Peregrine allows dynamically stopping exploration when the required
conditions get satisfied.

Figure 5.4b shows a Peregrine program to verify if the global clustering coefficient [128]
of graph g is above a certain bound. The global clustering coefficient is the ratio of three
times the number of triangles and the number of triplets (all connected subgraphs with three
vertices, including duplicates) in g. The number of triplets is equal to twice the number
of edge-induced 3-star matches since the endpoints of a 3-star are symmetric. Hence, the
program quickly computes the number of 3-stars, and then starts counting triangles. During
exploration, if the number of triangles reaches the requisite number to exceed the bound,
exploration stops immediately.

41

ExplorationPlan generatePlan (Pattern p) {
partialOrders = breakSymmetries (p);
vc = minConnectedVertexCover (p);
pC = vertexInducedSubgraph (vc , p);
matchingOrders = computeMatchingOrders (pC , partialOrders);
return (pC , partialOrders , matchingOrders);

}

Figure 5.5: Computing exploration plan.

u1 u2

u4 u3

w1 w2

u2 u4

u2 < u4
u1 < u3

Partial	Orders

Matching	Orders u1 u2

u4 u3
w1 w2

u2 u4

Matching	Orders

Vertex	Cover

{u2 ,	u4}

u2 < u4
u1 < u3

Partial	Orders

w1 w2

u2 u4

Matching	Orders

u1 u2

u4 u3

Pattern	Graph

v3

v5
v1

v2

v6
v4

v7

Data	Graph

Figure 5.6: Example of a pattern graph and a data graph.

Figure 5.4f shows Peregrine program to check whether a clique of a certain size is
present in g. As soon as the exploration finds at least one match, it stops and returns True.

5.4 Pattern-Aware Matching Engine

Peregrine is pattern-aware, and hence, it directly finds patterns in any given data graph.
In this section, we discuss our core pattern matching engine that directly finds canonical
subgraphs from a given vertex in the data graph. In Section 5.5, we will use this engine to
build Peregrine. For simplicity, we assume the data graph and the pattern are unlabeled.

5.4.1 Directly Matching A Given Pattern

To avoid the overheads of a straightforward exhaustive search, we develop our pattern
matching solution based on well-established techniques [93, 33, 123]. Since patterns are
much smaller than the data graph, we analyze the given pattern to develop an exploration
plan. This plan guides the data graph exploration to ensure generated matches are unique
up to automorphism.

Figure 5.5 shows how the exploration plan is computed from a given pattern p. First, to
avoid non-canonical matches we break the symmetries of p by enforcing a partial ordering on
matched vertices [93]. For our example pattern in Figure 5.6, we obtain the partial ordering
u1 < u3 and u2 < u4.

In the next step, we compute the core of p (called pC) as the subgraph induced by its
minimum connected vertex cover†. Given a match m for pC , all matches of p which contain

†A connected vertex cover is a subset of connected vertices that covers all edges.

42

m can be computed from the adjacency lists of vertices in m. In our example, pC is the
subgraph induced by u2 and u4.

To simplify the problem of matching pC , we generate matching orders to direct our
exploration in the data graph. A matching order is a graph representing an ordered view
of pC . The vertices of the matching order are totally-ordered such that the partial ordering
of V (p) restricted to V (pC) is maintained. This allows matching pC by traversing vertices
with increasing vertex ids without canonicality checks.

We compute matching orders by enumerating all sequences of vertices in pC that meet
the partial ordering, and for each sequence we create a copy of pC where the id of each
vertex is remapped to its position in the sequence. Then, we discard duplicate matching
orders. For our example pattern (Figure 5.6), its core substructure has only one valid vertex
sequence, {u2, u4}, so we obtain only one matching order. Note that there can be multiple
matching orders for a given pC depending on the partial orders. We call the ith matching
order pMi.

Thus, to match pC it suffices to match its matching orders pMi. A match for pMi results
in 1 match for pC per valid vertex sequence. In our example, a match for pM1, say {v2, v3},
is converted to a single match for pC , v2 → w1 → u1, v3 → w2 → u2.

It is important to note that the exploration plan is generated by analyzing the pattern
graph only, i.e., all the computations explained above are applied on p (and its derivatives).
Hence, exploration plans are computed quickly (often in less than half a millisecond).

5.4.2 Matching Under Extended Subgraph Isomorphism

In this section, we describe how anti-edge and anti-vertex constraints described in Chapter 4
are handled by the Peregrine matching engine, how each construct interacts affects the
pattern core, and finally how symmetries are broken in their presence.

Matching Anti-Edges. To enforce an anti-edge constraint, we perform a set difference
between the adjacency lists of its endpoints. Ex. 1 in Figure 5.7 shows an example pattern
p with an anti-edge and a data graph g. If x matches a and w matches b, the candidates for
d are the elements of adj(w) \ adj(x).

To perform the set difference, we need to ensure that one of the vertices of the anti-edge
is already matched so that its adjacency list is available. Hence, when computing the vertex
cover we also cover the anti-edge by including one of its endpoints.

Matching Anti-Vertices. The anti-vertex constraint can only be verified after the com-
mon neighbours of an anti-vertex’s neighbour have been matched. Thus, we perform the
check after all standard vertices are already matched.

43

No. Pattern p Graph g Match Set E⋆(g, p) Automorphisms

Ex. 1
a b
c d

w x

y z

x w

z y

w x

y z

wx

yz

Ex. 2
a b
c d

w x

y z

w x

y

w y

x

w x

y

w y

x

Ex. 3
a b
c d

w x

y z

w y

x

w x

y

w y

x

Figure 5.7: Anti-Edge and Anti-Vertex Examples.

For example, consider Ex. 2 in Figure 5.7, with anti-vertex d. If w, x, y in g match a, b,
c respectively, then we verify the anti-vertex constraint for d as follows:

(adj(x) \ {y}) ∩ (adj(y) \ {x}) = ∅

In this case, since x and y do not have a common neighbour, w-x-y and w-y-x are valid
matches. On the other hand, in Ex. 3, the anti-vertex d disallows matching y in g with
c, since adj(y) contains a valid candidate z. Since anti-vertices do not participate while
matching regular vertices and edges, we keep the pattern core pC the same as the core
pattern when anti-vertices are removed.

Symmetry-Breaking with Anti-Edges & Anti-Vertices. Given the definition of au-
tomorphism in Section 4.3, it may seem that anti-edges and anti-vertices should be ignored
when generating partial orders on standard vertices in a pattern p. However, ignoring anti-
edges and anti-vertices can lead to the situation where only part of a given match’s auto-
morphism group is a valid match under extended subgraph isomorphism. This is undesirable
because the partial orders generated without knowledge of anti-edges or anti-vertices may
prune the only automorphisms that are valid matches.

Example 5.4.1. Consider the following examples where ignoring anti-edges or anti-vertices,
respectively, results in missing the desired match.

1. Anti-edges. Consider Ex. 1 in Figure 5.7 and suppose anti-edges are ignored for the
purposes of symmetry breaking. Suppose the partial ordering on p is a < b < d, and
a < c. Then note that the only match in E⋆(g, p) violates this ordering, as x > w. The
other automorphism of that match satisfies the partial ordering but fails the anti-edge
constraint since w and z are adjacent.

44

2. Anti-vertices. Consider Ex. 3 in Figure 5.7 and suppose anti-vertices are ignored for the
purposes of symmetry breaking. If the partial ordering on p is chosen to be b < c, then
the sole match violates it, since y > x. Similar to the anti-edge example, the other
automorphism satisfies the partial ordering but violates the anti-vertex constraint
since y and z are adjacent.

Therefore, to avoid the above situations, Peregrine treats anti-edges and anti-vertices
as standard edges and vertices for the purposes of symmetry breaking, but with a placeholder
label to distinguish them from the original standard edges/vertices. In this manner, anti-
edges and anti-vertices disrupt the symmetries between standard edges and vertices and
thereby relax the partial orders. Continuing the previous examples, this means in Ex. 1 the
partial ordering on p becomes a < d and b < c, which the match satisfies. Likewise, in Ex.
3, the partial ordering on p vanishes, since b and c are no longer symmetric since d is only
adjacent to c, preventing the match from being pruned.

Crucially, including anti-edges when generating partial orders does not affect vertex-
induced patterns. As the following result shows, despite containing anti-edges, vertex-
induced patterns end up with the same partial ordering as their edge-induced counterparts.

Theorem 5.4.1. Let pE be an edge-induced pattern with no anti-edges, and let pV be the
vertex-induced pattern obtained by adding anti-edges to every pair of vertices in pE which
are not adjacent. Then pE and pV have the same partial ordering.

Proof. Partial orders are generated by breaking the symmetries of a pattern: adding con-
straints between pattern vertices until only one automorphism of the pattern remains. By
treating anti-edges in pV as standard edges with a different labeling, the symmetry breaking
algorithm considers the automorphisms of pV to preserve anti-edge relationships as well as
edge relationships. We prove the theorem by showing that the symmetry breaking algorithm
views pE and pV as having the same automorphisms.

Remark that due to the difference in labeling, anti-edges can never be mapped to stan-
dard edges by one of these automorphisms, and vice versa. Thus, the automorphisms of pV

according to the symmetry breaking algorithm consist of the automorphisms of the pattern
formed by the standard edges of pV , i.e., pE , intersected with the automorphisms of the
pattern formed by the anti-edges of pV , i.e., the complement of pE†. But it is well-known
that a graph and its complement have the same automorphism group [26]. Therefore, the
symmetry breaking algorithm will view the automorphisms of pV as the automorphisms of
pE .

†The complement of a graph g is a graph h such that two distinct vertices of h are adjacent if and
only if they are not adjacent in g. To generate the complement of g, edges are added between every pair of
non-adjacent vertices, and all edges that previously existed are removed.

45

5.4.3 Neighbourhood Groups

We observe that sets of non-core vertices with identical neighbourhoods exhibit useful prop-
erties that further enable Peregrine to avoid redundant computation and reduce the match
enumeration depth. Peregrine collects such vertices into neighbourhood groups, which it
leverages for several important optimizations. For example, pa has one neighbourhood group
{u1, u3}, while in pb there are two neighbourhood groups {u4} and {u5}, as the non-core
vertices are adjacent to different core vertices.

Candidate Sets per Neighbourhood Group

Since the vertices in a neighbourhood group have the same core neighbours, they also have
the same candidate matches. In pa, the non-core vertices vertices u1 and u3 are both adjacent
to u2 and u4, and hence have the same candidate set. Peregrine computes candidate sets
per neighbourhood group instead of per non-core vertex to avoid performing duplicate
operations for each member of a neighbourhood group.

Reducing Match Enumeration Depth

We make an important observation about the vertices within a neighbourhood group.
Namely, the vertices in a neighbourhood group are symmetric to each other. We exploit
these symmetries to efficiently enumerate matches instead of the traditional DFS enumera-
tion process that iteratively maps the candidates for each non-core vertex and backtracks.

In unlabeled patterns, the partial ordering of the pattern restricted to a neighbourhood
group is a total ordering. For example, the neighbourhood group {u1, u3} is totally ordered
due to the condition u1 < u3. In labeled patterns, each subset of the neighbourhood group
vertices with the same labels will be totally ordered. For ease of explanation, we use the
term match group to refer to a totally ordered subset of a neighbourhood group in labeled
patterns, and an entire neighbourhood group in unlabeled patterns.

This allows us to break up enumeration into several mostly independent stages. As the
elements of a match group are ordered and there are no orderings between match groups, we
can map the elements of an individual match group quickly in tight loops with few branches.
Importantly, vertices in separate neighbourhood groups are not symmetric, so there are no
checks for partial orders across groups. The only dependence outside a match group is
to avoid re-mapping data vertices that have already been matched in m. We proceed to
map one match group at a time in depth-first manner. By using match groups, the depth of
exploration is reduced from the number of non-core vertices to the number of match groups.

5.4.4 Match Groups & Fast Paths

With match groups enabled in Peregrine, we taxonomize patterns into different classes
based on the number of match groups they contain. By doing so, fast paths can be devel-

46

oped for different classes to skip certain depth-first exploration steps. Peregrine currently
incorporates two fast paths, one for the common case of a single match group, and another
for the common case of two match groups. From our example patterns, pa follows the former
fast path, and pb follows the latter.

Single Match Group

When there is a single match group containing k vertices, there is no need for any further
depth-first exploration. It remains only to enumerate all unique k-tuples from a single vector.
We can also skip checking whether vertices in m are present in the candidate set for the
match group, since all core vertices must be adjacent to the members of the match group,
otherwise there would be more than one.

When the graph mining use case only requires the number of pattern instances, the
count can be computed in constant time as

(︁|A|
k

)︁
where A is the candidate set for the match

group.

Two Match Groups

When there are two match groups, enumeration requires a Cartesian product of the sets
of unique tuples representing matches for vertices in each group, subtracting any overlap.
For example, consider pb. Each of its non-core vertices represents a separate match group.
Suppose u4 and u5 have candidate sets A and B, respectively. Then the matches for the
non-core vertices are precisely the pairs:

A × B \ {(v, v) : v ∈ A ∩ B}

Even though this requires an additional set intersection and an additional set difference to
account for overlaps, directly computing this set is much faster than a general depth-first
exploration.

To count the matches instead of enumerating, Peregrine simply computes the cardinal-
ity of the set directly. For example, the cardinality of the above set is simply |A|·|B|−|A∩B|.

Three+ Match Groups

The approach for two match groups generalizes to larger numbers of match groups as well.
However, the number of additional set operations required to remove overlaps grows combi-
natorially with the number of match groups. In a pattern with k match groups, it requires∑︁k

i=2
(︁k

i

)︁
additional set intersections and just as many set differences. This leads to dimin-

ishing returns after two match groups, and therefore when there are three or more match
groups Peregrine simply traverses them in depth-first fashion as described previously.

47

void matchFrom (Match m, Pattern p, Func f, MatchingOrder mo , PartialOrder
po , int i) {

if (i > |V (pC)|) {
// remaps m as in Section 5.4.1, before completing it
// and invoking the user ’s callback f()
completeMatch (m, p, f, po , 1);

} else {
for (v in getExtensionCandidates (mo , po , i)) {

matchFrom (m+v, p, f, mo , po , i+1);
}

}
}

AggregationVal match(Graph g, Pattern p, Func f) {
Aggregator a;
(pC , partialOrder , matchingOrders) = generatePlan (p);
parallel for (v in g) {

for (matchingOrder in matchingOrders) {
matchFrom ({v}, p, f, matchingOrder ,

partialOrders , 1);
}

}
return a. result ();

}

Figure 5.8: Pattern-Aware Processing Model.

matchFrom()

v3 v1 v3 v2 v3

v2

v3v1

v5 v5

v2 v3

v1

completeMatch() matchFrom() completeMatch()

Time

Figure 5.9: Pattern-guided exploration in Peregrine for pattern and data graph in Fig-
ure 5.6 with matching order high-to-low.

5.5 Peregrine: Pattern-Aware Mining

We will now discuss how Peregrine performs pattern-aware mining using the matching
engine presented in Section 5.4.

5.5.1 Pattern-Aware Processing Model

Mining in Peregrine is achieved by matching patterns starting from each vertex and
invoking the user function to process those patterns. Hence, a task in Peregrine is defined
as the data vertex where the matching process begins. As shown in Figure 5.8, each mining
task takes a start vertex and the exploration plan generated in Section 5.4 (matching orders,
partial orders, pattern core pC). From the starting vertex, we recursively match vertices in
the matching order. At each recursion level, a data vertex is matched to a matching order

48

vertex. To avoid non-canonical matches, we maintain sorted adjacency lists and use binary
search to generate candidate sets comprised only of vertices that meet the total ordering.

Once a matching order is fully matched, it is converted to matches for pC . Matches for pC

are then completed by performing set intersections (for standard edges) and set differences
(for anti-edges) on sections of adjacency lists that satisfy the partial orders. Each completed
match is passed to a user-defined callback for further processing. Figure 5.9 shows a complete
exploration example.

Note that our processing model doesn’t incur expensive isomorphism and canonicality
checks for every match in the data graph, while simultaneously avoiding mis-matches and
only exploring subgraphs that match the given pattern. Furthermore, tasks in our processing
model are independent of each other since explorations starting from two different vertices
do not require any coordination. Threads dynamically pick up new tasks when they finish
their current ones.

5.5.2 Early Pruning for Dynamic Load Balancing

While a matching order enforces a total ordering on the data vertices matching pC , there
is flexibility in the order in which its vertices are matched. To reduce the load imbalance
across our matching tasks, we: (a) follow matching orders high-to-low, e.g. in our example in
Figure 5.6 we match w2 before w1; and, (b) order vertices by their degree such that vi < vj

in the data graph if and only if degree(vi) ≤ degree(vj).
High-degree vertices have fewer neighbours with degrees higher than or equal to their

own, so the degree-based ordering ensures that when a high-degree vertex is matched to
w2, only those few neighbours can be matched to w1. Thus, explorations of neighbours with
lower degrees are pruned. Note that the total number of matches generated remains the
same; the high-to-low matching order traversal, along with degree-based vertex ordering,
reduces the workload imbalance of matching across high-degree and low-degree vertices
by dynamically pruning more explorations from high-degree tasks while enabling those
explorations in low-degree tasks.

Finally, it is important to note that this process does not ‘eliminate’ workload imbalance
simply because the mining workload is dynamic and depends on the pattern and data graphs.
Hence, to avoid stragglers and maximize parallelism, we process tasks in the order defined
by the degree of the starting vertex, beginning with the highest-degree vertices.

5.5.3 Early Termination for Existence Queries

For existence queries, Peregrine allows actively monitoring the required conditions so
that the exploration process terminates as quickly as possible. When the matching thread
observes the required conditions, the user function calls stopExploration() to notify other
matching threads. Threads monitor their notifications periodically while matching, and

49

when a notification is observed, the thread-local values computed up to that point are
aggregated and returned to the user.

5.5.4 On-the-fly Aggregation

Peregrine performs on-the-fly aggregation to provide global updates as mining progresses.
This is useful for early termination and for use cases like FSM where patterns that meet
the support threshold can be deemed frequent while matching continues for other patterns.

We achieve this using an asynchronous aggregator thread that periodically performs
aggregation as values arrive from threads. The matching threads swap the global aggregation
value with the local aggregation value and set a flag to indicate that new thread-local
aggregation values are available for aggregation. The aggregator thread blocks until all
thread-local aggregation values become available, after which it performs the aggregation
and resets the flag to indicate that the global aggregation value is available. With this
design, our matching threads remain non-blocking to retain high matching throughput.

5.5.5 Implementation Details

Peregrine is implemented in C++ where concurrent threads operate on exploration tasks,
each starting at a different vertex in the data graph. The data graph is represented using
adjacency lists, and the tasks are distributed dynamically using a shared atomic counter
indicating the next vertex to be processed. To minimize coordination, threads maintain
information regarding their exploration tasks, including candidate sets for each pattern
vertex as exploration proceeds.

Peregrine provides native computation of support values for frequency-based mining
tasks like FSM. Domains are implemented as a vector of bitmaps representing the data
vertices that can be mapped to each pattern vertex. They are aggregated by merging their
contents via logical-or. To scale to large datasets, we use compressed Roaring bitmaps [43],
which are more memory efficient than dense bitmaps.

5.6 Evaluation

We evaluate the performance of Peregrine on a wide variety of graph mining applications
and compare the results with the state-of-the-art general purpose graph mining systems †:
Fractal [77], Arabesque [205], RStream [219] and G-Miner [45].

5.6.1 Experimental Setup

System. All experiments were conducted on c5.4xlarge and c5.metal Amazon EC2
instances. Most experiments use c5.4xlarge, with an Intel Xeon Platinum 8124M CPU

†We could not evaluate AutoMine [146] directly since its source code is not available.

50

G |V (G)| |E(G)| |L(G)| Max. Avg.
Deg. Deg.

(MI) MiCo [82] 100K 1M 29 96637 21.6
(PA) Patents [100]

|— Unlabeled 3.7M 16M — 793 10
|— Labeled 2.7M 13M 37 789 10

(YT) YouTube [55] 6.9M 44M 38 4039 12
(OK) Orkut [225] 3M 117M — 33133 76
(FR) Friendster [225] 65M 1.8B — 5214 55

Table 5.2: Real-world graphs used in evaluation.
’—’ indicates unlabeled graph.

p1 p2 p6 p7 p8p3 p4 p5

p1 p2 p6 p7 p8p3 p4 p5

Figure 5.10: Patterns used in evaluation.

containing 8 physical cores (16 logical cores with hyper-threading), 32GB RAM, and 30GB
SSD. Fractal (FCL), Arabesque (ABQ) and G-Miner (GM) were evaluated using both a
cluster of 8 nodes (denoted by the suffix ‘-8’), as well as in single node configuration (denoted
by the suffix ‘-1’).

RStream was evaluated on a c5.4xlarge (RS-16) as well as a c5.metal (RS-96) equipped
with an Intel Xeon Scalable Processor containing 48 physical cores (96 logical cores with
hyper-threading), and 192GB RAM. Both instances were provisioned with a 500GB SSD.

In all performance comparisons, we ran Peregrine on a c5.4xlarge, and we used
c5.metal to study Peregrine’s scalability and resource utilization.

Datasets. Table 5.2 lists the data graphs used in our evaluation. MiCo (MI) is a co-
authorship graph labeled with each author’s research field. Patents (PA) is a patent citation
graph. In the labeled version, each patent is labeled with the year it was granted. Youtube
(YT) consists of videos crawled by [55] from 2007–2008, with edges between related videos.
Videos are labeled according to their ratings, as in [77]. Orkut (OK) and Friendster (FR) are
unlabeled social network graphs where edges represent friendships between users. MiCo and
labeled Patents have been used by previous systems [205, 77, 219] to evaluate FSM while
Orkut and Friendster were used by [45]. Except for FSM and labeled pattern matching, all
experiments on Patents use its larger, unlabeled version.

Applications. We evaluated Peregrine on a wide array of applications: counting motifs
with 3 and 4 vertices, labeled 3- and 4-motifs; counting k-cliques, for k ranging from 3 to
5; FSM with patterns of 3 edges on labeled datasets using various supports; matching the

51

patterns shown in Figure 5.10; and checking the existence of 14-cliques. We selected the
patterns in Figure 5.10 to cover all the patterns used in [77] and [45]; note that patterns
like triangles and empty squares are covered via applications like cliques and motifs. Since
G-Miner’s pattern matching program is specific to labeled p2 (in Figure 5.10), we used labels
on p2 for all the systems to enable direct comparison. To match it on Orkut and Friendster
graphs, which are unlabeled, we added synthetic labels (integers 1-6 as done in [45]) with
uniform probability.

5.6.2 Comparison with Breadth-First Enumeration

Table 5.3 compares Peregrine’s performance with Arabesque and RStream on motif-
counting, clique-counting, and FSM (these systems do not support pattern matching). As
we can see, Peregrine outperforms the breadth-first systems by at least an order of magni-
tude on every application except FSM. RStream, despite being an out-of-core system, runs
out of memory during FSM computations because of the massive amounts of aggregation
information, as well as during 4- and 5-cliques on MiCo where it could not handle the size
of a single expansion step.

It was interesting to observe that Arabesque performed better in single-node mode
compared to 8-node configuration across all experiments except FSM on Patents, where it
ran out of memory. This is because its breadth-first exploration generates large amounts of
partial matches which must be synchronized across the entire cluster between supersteps,
incurring high communication costs that impact its scalability.

When support thresholds are high, Arabesque on 8 nodes computes FSM more quickly
than Peregrine. This is because its breadth-first strategy leverages high parallelism when
there are few frequent patterns to explore and aggregate. However, this approach is sen-
sitive to the support threshold, which stops Arabesque from scaling to lower threshold
values where there are more frequent patterns. In these scenarios Arabesque simply fails
due to the memory burden of maintaining the vast amount of intermediate matches and
aggregation values. We suspect that even with more main memory per node, the intermedi-
ate computations (canonicality, isomorphism, etc.) for each individual match in Arabesque
would significantly limit its performance. Since Peregrine is pattern-aware, it only needs
to maintain aggregation values for the patterns it is currently matching, allowing it to scale
to inputs that yield many frequent patterns.

5.6.3 Comparison with Depth-First Enumeration

Table 5.4 compares Peregrine’s performance with Fractal on motif-counting, clique-counting,
FSM, and pattern matching. As we can see, Peregrine is faster than Fractal by at least
an order of magnitude across most of the applications. For instance, 4-cliques on Patents
finished in less than a second on Peregrine whereas Fractal took over 200 seconds in both
cluster and single-node configurations.

52

App G Peregrine Arabesque RStream
ABQ-8 ABQ-1 RS-96 RS-16

3-Motifs MI 0.12 158.05 39.05 51.83 252.74
PA 3.10 870.70 525.49 2685.45 2186.93
OK 17.90 — — / /
FR 370.64 — — / /

4-Motifs MI 6.74 — — / /
PA 12.04 — — / ×
OK 6156.10 — — / /

2K-FSM MI 380.81 3418.25 821.60 × —
3K-FSM MI 279.74 3520.82 784.27 × —
4K-FSM MI 250.68 3514.97 779.75 × —
20K-FSM PA 859.41 — — 1757.69 —
21K-FSM PA 647.97 — — 1711.87 —
22K-FSM PA 507.56 342.63 — 1626.53 —
23K-FSM PA 402.57 299.12 — 1936.92 —
3-Cliques MI 0.05 18.62 5.98 7.34 11.32

PA 0.59 155.55 87.26 8.40 11.97
OK 13.75 — — 986.20 1643.10
FR 296.99 — — / /

4-Cliques MI 2.02 1598.09 353.37 266.61 —
PA 0.90 249.38 107.02 105.00 181.30
OK 281.47 — — / /
FR 1337.77 — — / /

5-Cliques MI 89.60 × — — —
PA 1.12 352.64 122.09 145.00 237.90
OK 3182.56 — — / /
FR 4214.72 — — / /

Table 5.3: Execution times (in seconds) for Peregrine, Arabesque [205] and
RStream [219].

’×’ indicates the execution did not finish within 5 hours.
’—’ indicates the system ran out of memory.
’/’ indicates the system ran out of disk space.

53

App G Peregrine Fractal
FCL-8 FCL-1

3-Motifs MI 0.12 22.13 17.11
PA 3.10 231.95 214.34
OK 17.90 — —
FR 370.64 — —

4-Motifs MI 6.74 78.66 420.67
PA 12.04 362.19 742.35
OK 6156.10 — —

2K-FSM MI 380.81 154.47 675.98
3K-FSM MI 279.74 154.74 680.33
4K-FSM MI 250.68 144.34 663.26
20K-FSM PA 851.41 × —
21K-FSM PA 647.97 × —
22K-FSM PA 507.56 × —
23K-FSM PA 402.57 451.18 —
3-Cliques MI 0.05 18.71 17.21

PA 0.59 232.60 216.76
OK 13.75 — —
FR 296.99 — —

4-Cliques MI 2.02 25.77 34.79
PA 0.90 237.64 224.50
OK 281.47 — —
FR 1337.77 — —

5-Cliques MI 89.60 181.30 904.65
PA 1.12 266.88 217.30
OK 3182.56 — —
FR 4214.72 — —

Match p1 MI 0.12 24.76 36.02
PA 0.84 235.72 189.03
OK 38.97 — —
FR 824.62 — —

Match p2 MI 0.03 22.11 16.85
PA 1.07 260.15 202.23
OK 474.09 — —
FR 18.09 — —

Match p3 MI 19.93 181.76 1288.94
PA 13.41 30.18 69.33
OK 13292.77 — —

Match p4 MI 12.29 120.99 789.81
PA 2.23 25.58 21.63
OK 1569.73 — —
FR 7057.40 — —

Match p5 MI 14.94 56.51 345.35
PA 1.89 25.30 17.39
OK 1381.03 — —
FR 6726.51 — —

Match p6 MI 65.26 × ×
PA 27.94 210.04 205.39

Table 5.4: Execution times (in seconds) for Peregrine and Fractal [77].
’—’ indicates the system ran out of memory.

’×’ indicates the execution did not finish within 5 hours.

54

Given equal resources (i.e., on a single node), FSM on MiCo is up to 2.6× faster on
Peregrine compared to that on Fractal. Furthermore, Peregrine scales to the larger
dataset while Fractal does not. Even with 8 nodes, Fractal only outperforms Peregrine
on the small MiCo graph, and cannot handle the Patents workload except for very high
support thresholds, where there is less work to be done; there too, Peregrine executes
faster than Fractal.

Similar to Arabesque, Fractal’s pattern-unawareness requires it to maintain global aggre-
gation values throughout its computation. In FSM, the aggregation values consume O(|V |)
memory per vertex in each pattern in the worst case, and thus quickly become a scalability
bottleneck. On the other hand, Peregrine only needs to maintain aggregation values for
the current patterns being matched, which allows it to achieve comparable performance and
superior scalability while matching up to 15,817 patterns on MiCo and 6,739 patterns on
Patents.

5.6.4 Comparison with Purpose-Built Algorithms

G-Miner is a general-purpose subgraph-centric system that targets expert users to imple-
ment the mining algorithms using a low-level subgraph data structure. Since expressing
common mining algorithms requires domain expertise, we only evaluated the applications
that are already implemented in G-Miner: 3-clique counting and pattern matching on p2

(pattern matching for other patterns is not supported). This experiment serves to showcase
how Peregrine compares to custom algorithms for matching specific patterns.

Table 5.5 compares Peregrine’s performance with G-Miner. As we can see, Peregrine
is 3× to 77× faster than G-Miner when counting 3-cliques even though G-Miner implements
an algorithm designed specifically to count 3-cliques. When matching p2, Peregrine is 6×
to 131× faster on MiCo and Patents. On Orkut, however, G-Miner performs better on
finding p2; this is because G-Miner indexes vertices by labels when preprocessing the data
graph, whereas Peregrine discovers labels dynamically. Due to these indexes, G-Miner
could not handle Friendster even with 240GB disk space on the cluster.

55

App G Peregrine G-Miner
GM-8 GM-1

3-Cliques MI 0.05 3.79 3.86
PA 0.59 7.91 8.93
OK 13.75 44.26 62.65
FR 296.99 / /

Match p2 MI 0.03 3.67 3.95
PA 1.07 6.84 9.80
OK 474.09 145.00 396.72
FR 18.09 / /

Table 5.5: Execution times (in seconds) for Peregrine and G-Miner [45].
’/’ indicates the system ran out of disk space.

G
Existence Anti-Vertex Anti-Edge
14-Clique p7 p8

MI 0.07 0.65 6.92
PA 3.95 0.67 1.69
OK 4.08 56.06 879.01
FR 50.39 470.21 4017.15

Table 5.6: Peregrine execution times (in seconds) for matching with an anti-vertex (p7),
matching with an anti-edge (p8), and 14-clique existence query.

5.6.5 Mining with Constraints in Peregrine

We evaluate Peregrine on mining tasks with structural constraints. We match a pattern
containing an anti-vertex (p7), one containing an anti-edge (p8), and perform an existence
query of a 14-clique. The results are show in Table 5.6.

Mining with Anti-Vertices. Pattern p7 expresses a maximal clique of size 3 (triangle)
using a fully-connected anti-vertex, i.e., it matches all triangles that are not contained in
a 4-clique. While satisfying the anti-vertex constraint requires computing set-intersections
across all vertices of the triangle, Peregrine takes less than a minute on Orkut, and under
eight minutes on the billion scale Friendster graph.

Mining with Anti-Edges. Pattern p8 represents a vertex-induced chordal square using
an anti-edge constraint. Satisfying the anti-edge constraint is computationally demanding,
since it requires computing set differences of adjacency lists, which is twice as many opera-
tions as the sum of the adjacency list sizes. Nevertheless, Peregrine still easily completes
it on all the datasets.

56

MI PA OK
101
102
103
104
105

R
un

tim
e

(s
)

4-Motifs

2K 3K 4K 19K 20K 21K

500

1500

2500

3500

R
un

tim
e

(s
)

MI PA

FSM

PRG PRG-U

Figure 5.11: Execution times (in seconds) for Peregrine with (PRG) and without (PRG-
U) symmetry breaking. PRG-U could not finish matching any of the 4-motif patterns on
Orkut within 5 hours.

Existence Query. The goal of this query is to determine whether a 14-clique exists in
the data graph. Peregrine stops exploration immediately after finding an instance of 14-
clique. We observe that Patents and Orkut performed similarly; this is because the rarer
the target pattern for an existence query, the longer it takes to find it. Patents does not
contain a 14-clique, so the entire graph was searched, but in the much larger and denser
Orkut graph, a 14-clique gets found quickly during exploration. Friendster is both large
and sparse, and hence, 14-cliques are rare. Furthermore, since 14-clique is a large pattern,
several partial explorations do not lead to a complete 14-clique.

5.6.6 Peregrine’s Pattern-Aware Runtime

We evaluate the pattern-aware techniques in Peregrine as evidence for the impact of
application-aware design. The following experiments use the patterns in Figure 5.12.

Benefits of Symmetry Breaking Symmetry breaking is a well-studied technique for
subgraph matching that Peregrine uses to guide its graph exploration. However, recent
systems like Fractal [77] and AutoMine [146] are not fully pattern-aware and do not leverage
symmetry breaking for common graph mining use cases. We showcase the importance of
symmetry breaking in Peregrine by disabling it and running 4-motifs and FSM with low
support thresholds. These are expensive subgraph matching workloads: 4-motifs contains
complex patterns with many matches and FSM involves a large number of patterns to
match. Figure 5.11 summarizes the results.

We observe that symmetry breaking improves performance by an order of magnitude
for 4-motifs on MiCo and Patents. Orkut 4-motifs without symmetry breaking did not even
finish matching even a single size 4 pattern within 5 hours. This shows the importance of
symmetry breaking when scaling to large patterns and large datasets. For instance, Orkut
contains over 22 trillion unique vertex-induced 4-stars, and so without symmetry breaking,

57

Figure 5.12: Patterns used in micro-benchmarks.

p1 p2

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e

Patents

p1 p2

YouTube

NG W/O NG

Figure 5.13: Execution times for pattern matching queries with neighbourhood groups (NG)
and without neighbourhood groups (W/O NG). All times are normalized w.r.t. W/O NG.

the system must process six times that many matches (a 4-star’s automorphisms are the
permutations of its 3 endpoints: resulting in 3! = 6 automorphic subgraphs).

FSM achieves 3× performance improvement through symmetry breaking. This is be-
cause with symmetry breaking, FSM’s expensive aggregation values are only written to
once per unique match in the data graph, whereas the naive approach without symmetry
breaking would incur dozens of redundant write (and read) accesses per unique match.

Neighbourhood Groups. We measure the performance benefits achieved by neighbour-
hood groups. We run pattern matching queries with patterns p1 and p2 from Figure 5.10,
because in both patterns all the non-core vertices are organized in a single neighbourhood
group. Patterns without multiple vertices in a neighbourhood group remain unaffected. We
run the queries on the Patents [100] and YouTube [55] graphs. Patents is a sparse graph with
2.7M vertices and 13M edges where each edge represents a citation between US patents.
YouTube has 6.9M vertices and 44M edges, where each vertex represents a video and edges
link related videos together. The experiments are performed on an Intel Xeon Gold 3.10GHz
processor, using 16 physical cores with hyperthreading enabled and 32GB RAM.

Figure 5.13 shows the execution time for Peregrine with and without neighbourhood
groups. We observe that Peregrine achieves 11-25% better performance when using neigh-
bourhood groups. As expected, with neighbourhood groups enabled Peregrine performs
1.5-3× fewer set intersections to match the input patterns. This translates to huge savings:

58

p2 p3
0.0
0.2
0.4
0.6
0.8
1.0

1 Match Group

p2 p3

1 Match Group

p4 p5
0.0
0.2
0.4
0.6
0.8
1.0

2 Match Groups

p4 p5

2 Match Groups

Patents YouTube

4E
-3

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e

MG W/O MG

Figure 5.14: Execution time for pattern matching queries with match group fast paths (MG)
and without match group fast paths (W/O MG). All times are normalized w.r.t. W/O MG.

for instance, Peregrine performs 152M fewer intersections when matching p1 on YouTube
when using neighbourhood groups.

Match Groups. To measure the impact of the fast paths for the two pattern types, we
run pattern matching and 4-motif counting with and without the fast paths enabled. For
the pattern matching queries we use two patterns p2, p3 which have a single match group,
and two patterns p4, p5 with two match groups. Figure 5.14 shows the execution times. For
a single match group, the fast path leads to a 1.5-236× speedup for p2 and p3, while the
fast path for two match groups leads to a 1.25 − 6× speedup for p4 and p5. On YouTube,
the two match group fast path improves performance for p4 by 6× and p5 by 1.37× despite
requiring 50M and 4B more set intersections for p4 and p5 respectively.

We also observe performance benefits for 4-motif counting, where 4 out of 6 patterns
benefit from fast paths. Overall, 4-motif counting speeds up by 1.6 − 2.7×.

We profile the executions using perf to measure the reduction in branches due to the
fast paths. Figure 5.15 shows the results. On the YouTube graph, all of p2, p3, p4, p5 incur
on average 175× fewer branches during matching with the fast paths enabled, culminating
in 34× fewer branch misses on average. Even though the 4-motif counting query contains
patterns which do not benefit from the optimizations, it still performs 2 − 4.8× fewer
branches and 2.9B fewer mispredictions.

59

p2 p3
0.0
0.2
0.4
0.6
0.8
1.0

1 Match Group

p2 p3

1 Match Group

p4 p5
0.0
0.2
0.4
0.6
0.8
1.0

2 Match Groups

p4 p5

2 Match Groups

Patents YouTube

2E
-2

N
or

m
al

iz
ed

N
um

be
ro

fB
ra

nc
he

s

MG W/O MG

Figure 5.15: Number of branches for pattern matching queries with match group fast paths
(MG) and without match group fast paths (W/O MG). All numbers are
normalized w.r.t. W/O MG.

0.0 0.2 0.4 0.6 0.8 1.0
Runtime Ratio

MI

OK

4-Motif Execution Time Breakdown

PO Core Non-Core Other

Figure 5.16: Peregrine 4-motif execution time breakdown on Orkut and MiCo.

60

1 8 16 32 48 64 96
Number of Threads

1
10
20
30
40
50
60

Sp
ee

du
p 41x 46x

57x

(a) Scalability

Ideal
PRG
PRG HT

0 2 4 6 8 10 12 14 16
Elapsed Time (s)

0

20

40

60

80

100

C
PU

U
til

iz
at

io
n

(%
)

(b) Resource Utilization

0
5
10
15
20
25
30
35
40 M

em
ory

B
andw

idth
(G

B
/s)

Figure 5.17: (a) Scalability (PRG HT = hyper-threaded). (b) CPU utilization (solid) and
memory bandwidth (dashed) for 24 cores (blue), 47 cores (green) and 94 cores (red).

Breakdown on Mining Time. Figure 5.16 shows the ratio of time spent in each stage
of matching during 4-motif execution: finding the range of sorted candidate sets that meet
the pattern’s partial order (PO), performing adjacency list intersections and differences to
match the pattern core (Core) and finally, intersecting the adjacency lists of the pattern
core to complete the match (Non-Core). Some time is also spent on the other requirements
of matching, for example, fetching adjacency lists and mapping vertices (Other).

We observe that the majority of execution is spent intersecting adjacency lists of candi-
date vertices to complete matches. In comparison to the overall execution time, matching
the core pattern is insignificant. This is because the core pattern is matched according to all
valid total orderings of its vertices, and hence, the traversal is fully guided. In contrast, the
non-core vertices may or may not be ordered with respect to each other, and with respect
to the core vertices; so the runtime usually has less guidance when exploring the graph.
Furthermore, in most patterns the core is small and involves fewer intersections than the
non-core component.

5.6.7 System Characteristics

Scalability. We study Peregrine’s scalability by matching pattern p1 on Orkut using
c5.metal instance. Note that we do not perform a COST analysis [149] with this experiment
since we already compared Peregrine with optimized algorithms in Section 5.6.4, and
state-of-the-art serial pattern matching solutions like [210, 102] performed much slower
than our single threaded execution.

Figure 5.17a shows how Peregrine scales as number of threads increase from 1 to 96.
As we can see, Peregrine scales linearly until 48 threads, after which speedups increase
gradually. This is mainly because c5.metal has 48 physical cores, and scheduling beyond 48
threads happens with hyper-threading. We verified this effect by alternating how threads get
scheduled across different cores; the dashed lines in Figure 5.17a show speedups when every
pair of Peregrine threads is pinned to two logical CPUs on one physical CPU. As we can

61

3 4 5 3 4 5

10−1

100

101

102

M
em

or
y

(G
B

)

MI PA

k-Cliques

3 4 3 4
MI PA

k-Motifs

MI PA

FSM

ABQ FCL RS PRG

Figure 5.18: Peak memory usage of different systems across various applications. Tall red
bars represent RStream out of memory errors.

see, with 48 threads but only 24 physical cores, Peregrine only achieves a 30× speedup,
whereas with 48 physical cores it achieves a 41× speedup. Since pattern exploration involves
continuous random memory accesses throughout execution, hyper-threading helps in hiding
memory latencies only up to an extent. Figure 5.17b verifies this, as memory bandwidth
grows considerably higher when using more cores, though CPU utilization remains similar.

We observe that speedups also decline slightly between 24 cores and 48 cores. This is
because c5.metal has two NUMA nodes, each allocated to 24 physical cores. We measured
remote memory accesses to observe the NUMA effects: when running on 48 cores, cross-
numa memory traffic was 86GB as opposed to only 4.9MB when running on 24 cores.

Resource Utilization. Figure 5.17b shows CPU utilization and memory bandwidth con-
sumed by Peregrine while matching p1 on Orkut on c5.metal with 24, 47, and 94 threads.
We reserve a core for profiling to avoid its overhead. We observe that Peregrine maintains
high CPU utilization throughout its execution. The memory bandwidth curve increases over
time; as high degree vertices finish processing, low degree vertices do less computation and
incur more memory accesses as they get processed.

Figure 5.18 compares the peak memory usage for Peregrine and other systems. For
distributed systems we report the sum of all nodes’ peak memory. Peregrine consistently
uses less memory than all the systems, mainly because of its direct pattern-aware exploration
strategy. It is interesting to note that changing the pattern size in cliques and motifs does
not impact Peregrine’s memory usage. The usage is high for FSM compared to other
applications due to large domain maps for support calculation.

Load Balancing. Since Peregrine threads dynamically pick up tasks as they become
free, we observe near-zero load imbalance while matching p1 across all our datasets. The
difference between times taken by threads to finish all of their work was only up to 71 ms.

62

5.7 Conclusion

We presented Peregrine, a pattern-aware graph mining system that efficiently explores
subgraph structures of interest, and scales to complex graph mining tasks on large graphs.
Peregrine uses extended subgraph isomorphism to enable ‘pattern-based programming’
that treats patterns as first class constructs, including support for Anti-Edge and Anti-
Vertex that express advanced structural constraints on patterns to be matched. This
allows users to directly operate on patterns and easily express complex mining use cases as
‘pattern programs’ on Peregrine.

Peregrine’s runtime integrates seemingly incompatible application-specific techniques
thanks to its application-aware design philosophy. Our extensive evaluation showed that this
runtime enables Peregrine to outperform the existing state-of-the-art by several orders
of magnitude, even when using 8× fewer CPU cores. Furthermore, Peregrine successfully
handles resource-intensive graph mining tasks on billion-scale graphs on a single machine,
while the state-of-the-art fails even with a cluster of 8 such machines or access to large
SSDs.

63

Chapter 6

Subgraph Morphing: Application
Semantics in a System-Agnostic
Framework

Whereas the previous chapter designed a fully-fledged graph mining system Peregrine
using application-aware principles, this chapter takes a fundamentally different approach
and develops a middle-end framework that fits into pattern-based graph mining systems,
using knowledge of application semantics to automatically optimize execution.

We observe that the performance of graph mining applications is not only dependent on
the patterns queried by the application, but is also sensitive to system-level nuances (e.g.,
subgraph matching strategies and optimizations employed) as well as application-level char-
acteristics (e.g., application UDF and aggregation functions). We aim to take advantage of
the performance difference when mining seemingly similar patterns by exploiting the struc-
tural similarities across different patterns. In general, dramatic performance improvements
can be achieved if we could devise a general technique that can infer the results of a pattern
for which it is expensive to find matches directly (i.e., hard pattern) from those of other
patterns where matching is less expensive (i.e., easy pattern).

We propose Subgraph Morphing for graph mining systems – a generic technique that
enables structure-aware algebra over patterns to morph the queried patterns into a set of
alternative patterns, which can then be used to quickly compute accurate results for the
original patterns. We make the following key contributions in this chapter.

• We expose key factors that impact the performance of graph mining (Section 6.1). Our
observations from benchmarking various graph mining workloads across multiple graph
mining systems show that the nature of input workloads (input patterns and data graph
from the application), the pattern matching engines in graph mining systems, and the
processing requirements of mining applications, all together contribute to the final per-
formance. We envision these observations will be useful in building intuition for future
research and development on graph mining systems.

64

• We develop the Subgraph Morphing algebra that shows how patterns can be morphed
with guaranteed correct results (Section 6.2). Our algebra is general as it natively incor-
porates morphing with arbitrary aggregation operations from graph mining applications,
and it generates multiple alternative solutions (which we call alternative pattern sets) to
exploit different performance characteristics. With such generality, the system-level and
application-level nuances can be incorporated to improve the overall performance, which
is a key strength of our technique.

• We develop efficient strategies to enable Subgraph Morphing in practice. A major
challenge is the exponential search space of alternative pattern sets with different benefits.
We generate and navigate through different alternatives methodically using a novel data
structure called S-DAG and a greedy algorithm to select efficient alternative pattern sets
(Section 6.3). Our approach is backed by cost models that incorporate all the factors
discussed above while estimating the performance of alternative patterns.

Another challenge is that the results for queried patterns must be inferred from the results
of alternative patterns, which can be tedious for users to perform in application logic. We
develop strategies to seamlessly convert the results by operating on patterns and their
matches only, hence removing the need to modify the application logic (Section 6.4). Our
conversion strategies operate efficiently across both the common output modes in graph
mining systems: batched mode where aggregation results are output at the end, and
streaming mode where matching subgraphs are returned as a continuous output stream.

• We demonstrate the generality and effectiveness of Subgraph Morphing by integrating
it into four state-of-the-art graph mining and subgraph matching systems: Peregrine,
AutoMine/GraphZero [146, 145], GraphPi [192], and BigJoin [17]. Our extensive evalu-
ation on a variety of graph datasets and graph mining applications demonstrates that
Subgraph Morphing accelerates these systems by up to 34× on Peregrine, 10× on
AutoMine/GraphZero, 18× on GraphPi, as well as 13× on BigJoin (Section 7.6).

Notation. This chapter deals heavily with the relationships between edge-induced and
vertex-induced patterns. As a convenient notation, vertex-induced patterns are denoted
with a superscript V (e.g., pV always refers to a vertex-induced pattern) while edge-induced
patterns are denoted with a superscript E (e.g., pE always refers to an edge-induced pat-
tern). Note that cliques are simultaneously edge- and vertex-induced since there exists an
edge between any pair of vertices (and hence no anti-edge). For any given pattern p, we
refer to pE and pV as variants of each other. Throughout the chapter, we omit the super-
script on patterns when the discussion applies to both vertex-induced and edge-induced
patterns. Several patterns can be easily described by their names (e.g., triangle, clique,
w.r.t.). Figure 6.1 summarizes the common pattern names used in this chapter.

65

Triangle 4-Star Tailed
Triangle 4-Cycle Chordal

4-Cycle 4-Clique

p1 p2 p3 p4 p5 p6 p7p1 p2 p3 p4 p5 p6 p7

p1 p2 p3 p4 p5 p6 p7p1 p2 p3 p4 p5 p6 p7p1 p2 p3 p4 p5 p6 p7p1 p2 p3 p4 p5 p6 p7
Figure 6.1: Common pattern names.

6.1 Performance Analysis

This section identifies key factors that impact the performance of graph mining workloads in
order to motivate the need for a generic technique to accelerate arbitrary graph mining work-
loads across different graph mining systems. To understand the performance bottlenecks in
existing systems, we profiled various graph mining workloads on different open-source sys-
tems: Peregrine, GraphPi [192], and BigJoin [17] for subgraph matching. Figure 6.2 shows
the profiling results, and we summarize our observations below.

6.1.1 Graph Mining Applications

Figure 6.2a, Figure 6.2b and Figure 6.2c show the performance of three graph mining
applications on Peregrine: Frequent Subgraph Mining (FSM), Subgraph Counting (SC) and
Subgraph Matching (SM). These applications differ widely from each other. FSM invokes a
user-defined function (UDF) on each match to compute MNI of patterns, whereas SC does
not invoke any UDF since the system natively performs counting using set optimizations.
SM is between FSM and SC where it lists out the matches using a UDF, but the UDF is
simpler than in FSM.

Observation 1. Since the number of matches grows exponentially with graph size, in-
voking UDF on each match impacts the end-to-end processing time. UDFs become the
main performance bottleneck when they are expensive (as seen for FSM), while simpler
UDFs also influence the processing time by non-trivial amount (as seen for SM).

The above observation is also valid when mining vertex-induced subgraphs using systems
like GraphPi and BigJoin that only perform edge-induced exploration. For these cases, the
edge-induced matches mined by the system are processed using a Filter UDF to prune out
invalid matches (i.e., matches that do not contain all edges induced by their vertices). As
shown in Figure 6.2[d-e], the Filter UDFs are the main performance bottlenecks, and they
significantly slow down the overall processing compared to when matching edge-induced
subgraphs (which does not require any UDF).

6.1.2 Structure of Patterns

Next, we study the performance of SC and SM (Figure 6.2[b-c]). As expected, the set
operations on adjacency lists (set intersections and differences) take most of the time for

66

Set Operations Duplicate Avoidance Materialization UDF

0 50 100
Time (%)

MI

MG

18h

239s

(a) FSM

0 25 50 75 100
Time (%)

4S
TT

C4C
4CL

6.26s
9.52s
2.86s
1.57s

1.69s
2.59s
1.87s
0.57s

2.35s
3.56s

0.52s

2.15s
3.34s

0.47s

(b) Enumeration

0 25 50 75 100
Time (%)

4S
TT

C4C
4CL

1.85s
2.77s
1.96s
0.61s

1.66s
2.60s
1.85s
0.56s

(c) Counting

System Time Filter UDF MI MG

0 50 100
Time (%)

TT-E
TT-V

C4C-E
C4C-V

0.1s
123s
11.15s
95.7s

(d) GraphPi

0 50 100
Time (%)

TT-E
TT-V

C4C-E
C4C-V

105s
2680s
214s
>24h

(e) BigJoin

0 50 100
Time (%)

TT
4S
TT
4S

(f) Counting

Figure 6.2: Profiling graph mining systems. Figures (a-c) show performance breakdown of
FSM, Subgraph Matching and Subgraph Counting on Peregrine; (d-e) show performance
breakdown of enumerating matches in GraphPi [192] and BigJoin [17]; (f) shows the rela-
tive performance of mining patterns on different data graphs in Peregrine (relative w.r.t.
longer execution for each data graph). MG and MI are MAG and MiCo data graphs (see
Figure 6.10). 4CL, C4C, TT and 4S are patterns 4-clique, chordal 4-cycle, tailed triangle
and 4-star respectively (see Figure 6.1). The suffixes “-V” and “-E” indicate vertex-induced
and edge-induced patterns (e.g., TT-V is vertex-induced tailed triangle).

67

SC, while SM also spends time on materializing matches by merging sets of candidate
vertices.

Since graph mining systems analyze the pattern structure to generate customized pattern-
specific matching plans, the structure of the pattern dictates the effectiveness of the sub-
techniques involved in the matching plan (e.g., pruning strategies to account for pattern
symmetries, or different join fast-paths as in Section 5.4.4). Hence, different patterns incur
different amount of set operation and materialization time. While one would expect simi-
lar looking patterns (e.g., same number of vertices) to have similar performance trends, or
denser patterns to be more expensive than sparser patterns with same number of vertices,
no such performance trends are guaranteed. For instance, in Figure 6.2[b-c] we can see:

• A 4-star takes more set operation and materialization time than a 4-clique, even though
latter has twice the number of edges than the former (see pattern structures in Figure 6.1).

• A chordal 4-cycle has only one additional edge over a tailed triangle, but the latter con-
sumes more time for set operation and materialization compared to the former.

Observation 2. As graph mining systems generate pattern-specific matching plans, even
similar-looking patterns incur different amounts of set operations and materialization
time, which results in unexpected performance trends across those patterns that are diffi-
cult to justify.

6.1.3 Structure of Data Graphs

Next, we study the performance of mining different patterns on different data graphs. While
mining in larger graphs takes more time (which is expected), the structure of the data graph
impacts the relative performance of mining different patterns. This is visible in Figure 6.2f
where mining 4-stars is 25% faster than tailed triangles in MiCo graph, but it is 125% slower
in MAG graph. This is because the graph structure influences how different explorations
proceed or get pruned (e.g., matching order violation), which in turn impacts the amount
of work performed to mine all matches.

Observation 3. The structure of the data graph also influences the mining performance
since it dictates which explorations proceed while others get pruned out.

6.1.4 Graph Mining Systems

Finally, we study the relative performance between graph mining workloads across different
graph mining systems. Since graph mining systems employ different kinds of pattern match-
ing techniques (e.g., matching algorithms) and are implemented and optimized in different
manner (e.g., parallelization strategies), the performance relationships across workloads

68

varies across the systems as well. This is observed when comparing the performance num-
bers in Figure 6.2[b-d] for Peregrine and GraphPi: while the chordal 4-cycle is faster than
a tailed triangle in Peregrine, the performance relation is reverse for GraphPi where tailed
triangle is faster.

Observation 4. The design and implementation choices incorporated in graph mining
systems impacts the relative performance between different graph mining workloads.

6.1.5 Motivation Summary

In summary, the end-to-end processing time is influenced by: (a) the structure of patterns
and the data graph, (b) the matching strategies and optimizations employed by the mining
system, and (c) the processing requirements of the graph mining application (i.e., UDF
calls). More importantly, none of these factors are a clear single variable that should be
optimized over the other, making it difficult to improve the performance of mining systems.

This motivates the need for a general technique that graph mining systems can em-
ploy across various graph mining workloads. Subgraph Morphing is our general tech-
nique. It first methodically exposes the space of performance opportunities (Section 6.2)
and then considers the system-level and application-specific nuances to deliver high perfor-
mance across different scenarios (Section 6.3 and Section 6.4).

6.2 Subgraph Morphing

This section describes principles of subgraph morphing with illustrative examples, and de-
velops its semantics.

6.2.1 Overview

Subgraph Morphing primarily exploits the structural similarities across different patterns.
The key idea is to morph the input patterns from graph mining applications into alternative
patterns that are less expensive to compute, and then convert the results for those alter-
native patterns into results for the original input patterns. When Subgraph Morphing is
integrated in graph mining systems, their workflow gets enhanced with two new steps (shown
in Figure 6.3): pattern transformation and result transformation. Instead of being directly
passed to the execution planner, the input patterns first undergo a pattern transformation
step resulting in alternative patterns. Then, matching plans are computed and followed to
explore matches for the alternative patterns from the input graph. Finally, the results for
alternative patterns are sent through the result transformation step to compute the results
for the original input patterns. Details of pattern transformation and result transformation
will be explained in Section 6.3 and Section 6.4 respectively, and Appendix B illustrates the
key steps in Subgraph Morphing using two graph mining applications. In this section,
we will focus on the semantics of Subgraph Morphing.

69

pe pf

pa

pb

pc

pd

pfpa

pb

pc

pd

pe

#Matches

𝑝
ா

7

𝑝
ா

9

𝑝 1

Cost

E.I. V.I.

𝑝 25 4

𝑝 15 3

𝑝 17 4

𝑝ௗ 5 2

𝑝 6 3

𝑝 5 5

Cost

E.I. V.I.

𝑝 1 20

𝑝 3 30

𝑝 10 12

𝑝ௗ 5 10

𝑝 5 9

𝑝 7 7

𝑇ଵ
𝑠 𝑤 𝑠 𝑣

𝑡 𝑡

𝑇ଶ
𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑇ଷ
𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

𝑝

𝑠 𝑢 𝑤 𝑣
𝑡

𝑝

𝑠 𝑤 𝑠 𝑣

𝑡 𝑡

𝑝
ா

𝑠 𝑠 𝑠 𝑣
𝑡 𝑡 𝑡
𝑢 𝑢 𝑢

𝑤 𝑤

𝑝
𝑠 𝑠 𝑠 𝑣
𝑡 𝑡 𝑡
𝑢 𝑢 𝑢

𝑤
𝑥

𝑡

𝑦

𝑢 𝑧

𝑠 𝑣

Execution
Planner

Pattern
Transformation

Plans Matching
Engine

Results
Alternative

Patterns

Result
Transformation

Application
(FSM, MC, etc.)

Results

Matching
Engine

Execution
Planner

Patterns ResultsPlans

Application
(FSM, MC, etc.)

Data Graph, Aggregation

Data Graph, Aggregation

Figure 6.3: Graph mining with Subgraph Morphing.

6.2.2 Intuition & Example

The intuition behind Subgraph Morphing can be summarized with the following two key
observations.

[P1] A match for an edge-induced pattern pE on n vertices is also a match for all of its
subpatterns on these vertices. For example, a match for a 4-clique is also a match for an
edge-induced 4-cycle, since the 4-clique contains all the edges of the 4-cycle. Note that this
observation does not apply to vertex-induced patterns—although a vertex-induced 4-cycle
contains the same four (regular) edges, the additional two anti-edges exclude matches for
4-cliques.

[P2] A match for a vertex-induced pattern pV is always a match for the corresponding
edge-induced pattern pE , but not vice versa—pV matches exactly the edges in pE but a
subgraph that matches pE may contain additional edges that are against the anti-edges in
pV .

Example. These observations indicate that we can logically partition the matches for an
edge-induced pattern into disjoint sets of matches for vertex-induced patterns. For example,
consider a match for the edge-induced 4-cycle. The vertices in this match may have edges
that are in the graph but not present in the pattern. If these edges do not exist, this is
also a match for the vertex-induced 4-cycle (e.g., a-b-c-d in Figure 6.4a). If there exists
exactly one extra edge, it is a match for the vertex-induced chordal 4-cycle (e.g., d-c-g-f in
Figure 6.4a). Finally, if there are two extra edges in the match, it is a match for the 4-clique
(e.g., a-d-f-e in Figure 6.4a). These situations are mutually exclusive since they depend on
specific edges being present or absent.

While the above partitioning enables converting matches, a match for a given pattern
can potentially contain multiple matches for another pattern. For example, a match for the
4-clique contains 3 unique matches for the edge-induced 4-cycle, as shown in Figure 6.4b.
Hence, in order to convert a match for the 4-clique into a match for the 4-cycle, we must
correctly map the 4-clique vertices, using the subgraph isomorphisms, to those of the 4-cycle.

70

(a) Edge-induced 4-cycle contains 4-clique,
vertex-induced chordal 4-cycle, or vertex-
induced 4-cycle.

a

e

d

f

a

e

d

f

a

e

d

f

a

e

d

f

(b) 4-clique contains three unique edge-induced
4-cycles.

Figure 6.4: Identifying matches for different patterns.

6.2.3 Semantics

Subgraph Morphing performs structure-aware algebra over patterns (and hence, their matches)
to capture all matches for a given pattern in the input graph by converting the matches of
different (alternative) patterns. One way to find alternative patterns for a given pattern is
to consider its superpatterns because matches of a pattern are guaranteed to contain valid
matches for its subpatterns. Hence, our first idea is to derive the matches of the pattern
using its superpatterns.

Let g ∈ G be a graph and let p ∈ G⋆ be a pattern. Recall that E∗
⋆ (g, p) is the set of all

unique matches for p in g under extended subgraph isomorphism. Then,

E∗
⋆ (g, pE) = E∗

⋆ (g, pV) ∪
⋃︂

qE⊃npE

E∗
⋆ (g, qV) ◦ ϕ(pE , qE) (6.1)

where qE ⊃n pE indicates the superpatterns qE of pattern pE containing same number
of vertices (n), ϕ(pE , qE) captures the set of all subgraph isomorphisms from pE to qE ,
and E∗

⋆ (g, qV) ◦ ϕ(pE , qE) permutes the vertices in each match m ∈ E∗
⋆ (g, qV) according to

subgraph isomorphism from pE to qE .
In simple words, given an edge-induced pattern pE , we start with using the matches

of its vertex-induced variant pV (observation [P2]). However, since pV contains anti-edges
that eliminate some valid matches for pE , we compensate by using matches for additional
superpatterns, each obtained by replacing anti-edges in pV one-by-one with true edges (ob-
servation [P1]). This ends up generating an alternative pattern set for pE that contains
all of its vertex-induced superpatterns with the same number of vertices. Since a match
for a superpattern can contain multiple matches for a subpattern (e.g., 4-clique contains
three edge-induced 4-cycles in Figure 6.4b), we use permutation functions to generate all
the matches of the subpattern. A permutation function converts matches of a superpattern

71

2

= + +4 12

=

= —

+ + 3

3—

[SM-E1]

[SM-E2]

[SM-V1]

= + +2[SM-E3]

Figure 6.5: Sample equations resulting from subgraph morphing. [SM-V1] morphs vertex-
induced pattern (left) whereas other equations morph edge-induced patterns. [SM-E1] and
[SM-E2] are directly obtained from Eq. 6.1, [SM-E3] by recursively substituting in [SM-E1],
and [SM-V1] by adjusting [SM-E2]. The coefficients indicate the numbers of unique matches
resulting from subgraph isomorphism.

into matches for the subpattern based on isomorphic mappings from the subpattern to the
superpattern.

To maintain the flow of exposition, the proof for Eq. 6.1 is deferred to Section 6.2.5. Next,
we focus on the two key aspects that make our Subgraph Morphing strategy generic:
directly converting arbitrary aggregations results and multiple alternatives for converting
matches.
Converting Aggregation Results. Subgraph Morphing can be applied directly on
aggregation results instead of converting the individual matches. By doing so, we can pre-
vent materialization of a significant number of matches, and reduce UDF overheads while
computing aggregations by invoking them on fewer matches.

Let a = ⟨R, ⊕⟩ denote the aggregation, with ν as the map from matches to aggregation
values. For a set of matches E∗

⋆ (g, p) in graph g ∈ G, write a(E∗
⋆ (g, p)) as a shorthand for⨁︁

m∈E∗
⋆ (g,p)

ν(m). The aggregation results can be directly converted as follows (correctness

proven in Section 6.2.5):

a(E∗
⋆ (g, pE)) = a(E∗

⋆ (g, pV)) ⊕
(︂ ⨁︂
qE⊃npE

⨁︂
f∈

ϕ(pE ,qE)

a(E∗
⋆ (g, qV)) ◦∗ f

)︂
(6.2)

where ◦∗ is a permute operator for aggregation values to account for the permutations
according to ϕ(p, q) (similar to ◦ defined on matches in Eq. 6.1). The ◦∗ operator adjusts
the aggregation value based on a given permutation f in ϕ(p, q). The definition of the
permutation function depends on the aggregation operation performed on the matches.
For instance, the permutation function for counting accounts for all unique isomorphic
mappings, which results in multiplying the number of matches of a superpattern by the

72

number of unique isomorphic mappings. In FSM, the permutation function permutes the
columns of the MNI table of the match, in a similar manner, based on subgraph isomorphism.
Multiple Alternative Pattern Sets. While Eq. 6.1 identifies alternative patterns for
edge-induced patterns, we can move in the other direction as well to compute results for
vertex-induced patterns (achieved by rearranging the terms in Eq. 6.1 to bring E∗

⋆ (g, pV)
on left-hand side). More importantly, the patterns in the alternative pattern set can be
iteratively substituted with their conversion equations to obtain different alternative pattern
sets. By recursively substituting the patterns with their alternative patterns sets, we can
generate a system of equations representing different alternative pattern sets that can be
used to compute the results for a given query pattern. Additionally, the alternative pattern
sets can contain a combination of vertex-induced and edge-induced patterns by converting
the intermediate aggregations through recursive substitution.

Figure 6.5 shows a few samples of how patterns can be morphed to a given pattern. The
coefficient associated with a pattern indicates the number of unique matches resulting from
subgraph isomorphism (e.g., 4-clique has three 4-cycles, and hence the 4-clique in Equation
[SM-E2] has a coefficient 3). As we can see, [SM-E1] and [SM-E3] are two different equations
to compute results for the tailed triangle. With different choices for alternative pattern sets,
the pattern query can be optimized by selecting the alternative set for which matches can
be efficiently computed (discussed in Section 6.3).

6.2.4 Significance of Generic Subgraph Morphing

The generic nature of Subgraph Morphing enables accelerating arbitrary graph mining
applications while also incorporating system-level nuances and application-level character-
istics. For example, system-level nuances were shown to impact the mining workloads dif-
ferently in Section 6.1, causing certain patterns to be faster than others on one system but
slower on another system. In such a situation, alternative patterns sets can be optimized
differently for each individual system by accounting for their relative performance across
different patterns; in our example from observation 4, this would mean choosing tailed
triangle over 4-cycle for GraphPi but not for Peregrine. Similarly, application-level charac-
teristics like application UDF and the structure of the data graph were shown to impact the
query performance in Section 6.1. Since Subgraph Morphing enables direct conversion
of aggregation results, the impact of these application-level characteristics can be directly
accounted in choosing the right set of alternative patterns. For example, expensive UDF
calls like filtering each match or computing MNI tables for FSM can be reduced by using
alternative patterns that are expected to generate fewer matches. But on the other hand,
applications that employ inexpensive aggregation operations like counting (system-native)
can benefit from alternative patterns that are expected to incur fewer set operations.

In comparison, counting techniques developed in prior works like [141, 108, 168, 151, 234]
are inapplicable for general-purpose graph mining systems since they focus on count conver-

73

sion rules that are customized for specific types of equations on specific patterns. Hence, they
cannot systematically generate multiple alternative sets for a given query pattern, which
renders them useless as they cannot account for various system-level and application-level
nuances. For instance, blindly converting results from vertex-induced to edge-induced (or
vice-versa) would often be slower than the original query, depending on the system and the
application.

6.2.5 Proofs of Equivalence

This section proves that Subgraph Morphing preserves equivalent results after trans-
forming input patterns.

Match Conversion. Recall Eq. 6.1 from Section 6.2.3. Let g ∈ G be a graph and let
p ∈ G⋆ be a pattern. Then,

E∗
⋆ (g, pE) = E∗

⋆ (g, pV) ∪
⋃︂

qE⊃npE

E∗
⋆ (g, qV) ◦ ϕ(pE , qE) (6.1)

where qE ⊃n pE indicates the superpatterns qE of pattern pE containing same number
of vertices (n), ϕ(pE , qE) captures the set of all subgraph isomorphisms from pE to qE ,
and E∗

⋆ (g, qV) ◦ ϕ(pE , qE) permutes the vertices in each match m ∈ E∗
⋆ (g, qV) according to

subgraph isomorphism from pE to qE .

Proof. Since we are proving set equality, we will first show how every match in E∗
⋆ (g, pE) is

contained in the set on the right-hand side of the equation, and then show that E∗
⋆ (g, pE)

contains every match from the right-hand side.
Let m be a match in E∗

⋆ (g, pE), and qV be the pattern of the subgraph induced by the
image of m. qV must have at least as many edges as pE , since it was induced by a match
for pE .
– Case 1: If qV has the same number of edges as pE , qV is isomorphic to pV and hence
m ∈ E∗

⋆ (g, pV).
– Case 2: Otherwise, qV has more edges than pE . Consider the edge-induced pattern qE

corresponding to qV . qE must be a superpattern of pE , since qV has more edges than pE

but contains all the edges of pE . This means ϕ(pE , qE) is non-empty. For any f ∈ ϕ(pE , qE),
observe that m ◦ f−1 : V (qE) → V (pE) → G is a match for qV , since V (qE) = V (qV) and
qE was obtained from the induced pattern qV . This means m ◦ f−1 ∈ E∗

⋆ (g, qV), and hence
m ◦ f−1 ◦ f = m ∈ E∗

⋆ (g, qV) ◦ ϕ(pE , qE).
Therefore, we showed E∗

⋆ (g, pE) is a subset of the right-hand side of the equation. Next,
we will prove that the right-hand side is contained within E∗

⋆ (g, pE).
First, note that a match for pV is trivially a match for pE , since pE and pV differ only

in anti-edges, so E∗
⋆ (g, pV) ⊆ E∗

⋆ (g, pE).

74

Next, take any match m ∈ E∗
⋆ (g, qV) where qE ⊃n pE . m is also in E∗

⋆ (g, qE) by the
same reasoning as above. But then for any f ∈ ϕ(pE , qE), m ◦ f : V (pE) → V (qE) → G is
a match for pE since any match for qE contains all edges required for matching pE . Hence,
E∗

⋆ (g, qV) ◦ ϕ(pE , qE) ⊆ E∗
⋆ (g, pE).

Taking the union of E∗
⋆ (g, pV) and E∗

⋆ (g, qV) ◦ ϕ(pE , qE) for each qE ⊃n pE gives the set
of matches that are contained in E∗

⋆ (g, pE).

Eq. 6.1 reflects a useful relationship between edge-induced and vertex-induced patterns.
In fact, although the theorem is stated in terms of converting from vertex-induced to edge-
induced, we can move in the other direction as well:

Corollary 6.2.1. Let pE be an edge-induced pattern with n vertices, and pV be its vertex-
induced variant. Then,

E∗
⋆ (g, pV) = E∗

⋆ (g, pE) \
⋃︂

qE⊃npE

E∗
⋆ (g, qV) ◦ ϕ(pE , qE)

Proof. Let B denote the set

⋃︂
qE⊃npE

E∗
⋆ (g, qV) ◦ ϕ(pE , qE).

From Eq. 6.1, we have E∗
⋆ (g, pE) = E∗

⋆ (g, pV)∪B. Notice that if E∗
⋆ (g, pV) is disjoint from all

E∗
⋆ (g, qV) ◦ ϕ(pE , qE) where qE ⊃n pE , then we could take the set difference on both sides

of the equation from Eq. 6.1 with B to prove the corollary, simply because no element of
E∗

⋆ (g, pV) would be removed by the set difference operation.
It remains to prove that E∗

⋆ (g, pV) is disjoint from the various E∗
⋆ (g, qV)◦ϕ(pE , qE) where

qE ⊃n pE . We prove this by contradiction.
Let m be a match in E∗

⋆ (g, pV) ∩ E∗
⋆ (g, qV) ◦ ϕ(pE , qE) for any pV and some qV where

qE ⊃n pE . First note that if pV is a clique, there is no qE ⊃n pE , and m cannot exist,
so we are done. Instead, suppose pV is not a clique, and thus has at least one anti-edge.
Since qE ⊃n pE , for each f ∈ ϕ(pE , qE) there is an edge (f(u), f(v)) ∈ E(qE) such that
(u, v) ̸∈ E(pE). This means (u, v) forms an anti-edge constraint in pV , and (f(u), f(v))
forms an edge constraint in qV . As m ∈ E∗

⋆ (g, qV) ◦ ϕ(pE , qE), it can be written in the form
m = m′ ◦ f where m′ ∈ E∗

⋆ (g, qV) and f ∈ ϕ(pE , qE). But then ((m′ ◦ f)(u), (m′ ◦ f)(v))
must be an edge in G, since (f(u), f(v)) ∈ E(qV) and m′ is a match for qV . This directly
contradicts the anti-edge constraint in pV that we established above.

Hence E∗
⋆ (g, pV) ∩ E∗

⋆ (g, qV) ◦ ϕ(pE , qE) = ∅ for all qE ⊃n pE , as desired.

75

Aggregation Conversion. Let g ∈ G be a graph and let p ∈ G⋆ be a pattern. Recall
Eq. 6.2:

a(E∗
⋆ (g, pE)) = a(E∗

⋆ (g, pV)) ⊕
(︂ ⨁︂
qE⊃npE

⨁︂
f∈

ϕ(pE ,qE)

a(E∗
⋆ (g, qV)) ◦∗ f

)︂
(6.2)

Proof. This equation follows immediately from Eq. 6.1.

a(E∗
⋆ (g, pE))

= a

⎛⎝E∗
⋆ (g, pV) ∪

⋃︂
qE⊃npE

E∗
⋆ (g, qV) ◦ ϕ(pE , qE)

⎞⎠
= a(E∗

⋆ (g, pV)) ⊕

⎛⎝ ⨁︂
qE⊃npE

a(E∗
⋆ (g, qV) ◦ ϕ(pE , qE))

⎞⎠
= a(E∗

⋆ (g, pV)) ⊕

⎛⎝ ⨁︂
qE⊃npE

⨁︂
f∈ϕ(pE ,qE)

a(E∗
⋆ (g, qV)) ◦∗ f

⎞⎠

6.3 Generating Alternative Pattern Sets

This section describes the pattern transformation step (see Figure 6.3) to compute alterna-
tive patterns.

To fully exploit Subgraph Morphing, our goal is to generate alternative pattern sets
that would potentially compute the final results efficiently compared to the original query
patterns. This cannot be achieved statically because of two main reasons. First, the query
patterns in graph mining applications can change dynamically during runtime. For instance
in FSM, only those patterns that have enough matches in the data graph (i.e., cross a
support threshold) are extended to generate the new set of patterns to be explored in the
next step. And second, the input data graph itself impacts the performance of matching
(observation 3 in Section 6.1). Hence, we dynamically generate the alternative patterns for
the query patterns as they become available at runtime.

Since the possible alternative pattern sets grow recursively, the search space for identi-
fying efficient alternative pattern sets grows exponentially. For a single query pattern, the
choice may appear simple. However, when the input contains multiple query patterns, the
number of choices increases exponentially as the alternative sets for different patterns over-
lap, making it hard to estimate benefits. For instance, two patterns may have a lower cost
(i.e., faster to compute) compared to the cost of their individual alternative pattern sets;
however, the cost of the combined alternative pattern sets can be lower (due to overlapping
patterns) than that of the two patterns.

76

Exhaustively searching all possible combinations of alternative pattern sets is impracti-
cal. Instead, we develop a greedy exploration strategy backed by a cost model that actively
prunes the search space. Our approach is to first generate a single alternative set, and then
use a cost-based selection strategy to iteratively improve the alternative set by substituting
better (low cost) alternatives.

6.3.1 Initial Alternative Patterns

Given a set of input patterns, we generate the initial alternative pattern set for each pattern
in the input set using Eq. 6.1. This primarily involves generating superpatterns of the input
pattern (second term in Eq. 6.1). While the final alternative pattern set contains a mix of
vertex-induced and edge-induced patterns, the choice of each individual pattern being either
vertex-induced or edge-induced is independent of the other patterns in the set. Hence, we
generate edge-induced superpatterns, and later optimize the choice for each pattern when
constructing the efficient alternative pattern set. By doing so, we maximize the overlap
between the alternative patterns generated across different patterns in the input set, which
is beneficial since the same superpattern (or its alternatives) covers multiple input patterns.

The superpatterns of the input pattern are generated by extending them recursively,
adding edges between disconnected vertices. Naïvely extending the input patterns can end
up generating duplicate patterns due to two reasons. First, adding edges between automor-
phic (or symmetric) sub-components of a given pattern can result in the same superpatterns;
for instance, adding an edge between any pair of disconnected vertices in a 4-cycle would
result in the same chordal 4-cycle pattern. Second, different patterns with the same num-
ber of vertices have a common subset of superpatterns; for instance, a 4-cycle and a tailed
triangle both have the 4-clique and chordal 4-cycle as their superpatterns.

We avoid generating redundant superpatterns by maintaining them in the S-DAG data
structure, as described next.
S-DAG for Superpattern Sets. As superpatterns get generated, we memoize them
and their superpattern-subpattern relationships in form of a directed acyclic graph, called
S-DAG. The S-DAG is queried each time before recursively extending any pattern and
adding new superpatterns in order to avoid redundant pattern alternatives.

Each vertex of the S-DAG represents a pattern (either one of the input patterns or one
of their superpatterns), and we draw directed edges from each pattern with k edges to its
superpatterns with k + 1 edges. Figure 6.6 shows two S-DAG examples: one where patterns
are unlabeled, and other where patterns are labeled. Depending on the number of labels in
the pattern, the number of possible patterns increases compared to the number of unlabeled
patterns, and each labeled pattern can have many more superpatterns than an unlabeled
one.

For fast comparison and lookup operations on S-DAG, we represent the patterns using
64-bit pattern IDs which uniquely correspond to the pattern structures. Each pattern is first

77

Figure 6.6: S-DAG for unlabeled patterns (on left), and for patterns with one yellow labeled
vertex (on right).

canonicalized (using Bliss library [117]) so that its vertices have consistent vertex IDs. Then,
the edges of the canonicalized pattern are hashed consistently to compute its pattern ID
that uniquely identifies the pattern structure. While pattern IDs can be computed quickly
(in milliseconds) as patterns get generated, they can also be computed offline.

6.3.2 Selecting Efficient Alternative Patterns

Once the S-DAG is generated, the final alternative pattern set is constructed by carefully
selecting the set of patterns based on the potential performance benefits they can bring.
To avoid evaluating every possible alternative set in the exponential search space, we de-
velop a greedy algorithm that iteratively finds better alternatives using the S-DAG. Instead
of searching for the optimal alternative pattern set, our goal is to construct an efficient
alternative set that promises faster execution compared to the original query patterns.

Algorithm 1 shows the selection algorithm. Initially, each node in S-DAG is assigned
a cost that estimates the time taken to match that pattern. Since either variant of super-
patterns can be used in the alternative pattern set, the nodes are assigned the minimum
cost between the two variants of the patterns they represent. Then the algorithm proceeds
iteratively to replace patterns with lower cost alternatives.

For each pattern we check whether any subsets of the pattern’s children in the S-DAG
benefit from morphing. If the combined cost of the children is more than the cost of their
combined superpatterns, then the superpatterns are selected for the alternative pattern
sets. When the alternative patterns are selected, the S-DAG is re-weighted to reflect that
those patterns are free, i.e., their cost is set to 0, and then the patterns are traversed again.
The algorithm incrementally reduces the cost of the alternative pattern set until it can no
longer be improved. By considering only the subsets of each pattern’s children, we reduce
the exponential search space to the number of unique subpatterns for each pattern.

78

Algorithm 1 Efficient Alternative Patterns
Input: Set of query patterns P and their S-DAGP

Output: Low-cost alternative pattern set S
1: initializePatternCosts(S-DAGP)
2: procedure selectPatterns(P , S-DAGP)
3: S ← P
4: while S not converged do
5: for each p ∈ ∪s∈S parents(S-DAGP , s) do
6: for each C ∈ P(children(S-DAGP , p)) where C ⊆ S do
7: costC ←

∑︁
c∈C

initial_cost(c)
8: SP C ← ∪c∈C superpatterns(c)
9: costSP C ←

∑︁
spc∈SP C

cost(spc)
10: if costSP C < costC then
11: S ← (S \ C) ∪ SP C
12: for each c ∈ C ∪ SP C do
13: setCost(S-DAGP , c, 0)
14: end for
15: end if
16: end for
17: end for
18: end while
19: return S
20: end procedure

Estimating Relative Pattern Costs. In order to identify cheaper pattern alternatives,
the selection algorithm requires pattern costs that represent the estimated relative times to
match different patterns. The cost of subgraph matching depends not only on the input pat-
terns and the data graph, but also on the system-specific properties such as the underlying
matching algorithm used by the system and on application-specific details like aggregation
functions.

Modern graph mining and subgraph matching systems like [146, 145, 192, 95] often in-
corporate a cost model to compute efficient exploration plans for the given patterns. While
these models are useful, they do not account for any application-specific detail since it is
irrelevant to their matching plans. Since we are interested in costs that estimate the perfor-
mance of different patterns on a given application workload, for these systems we piggyback
on their existing cost model by enhancing them to include cost of result aggregation.

The data graph is modeled by an abstract probabilistic graph, where two vertices are
connected by an edge with a fixed probability. The subgraph matching process is modeled
as a series of V (P) nested loops over this abstract graph. After computing the expected
number of iterations in each loop, keeping in mind previous loops, the final cost is simply
the number of iterations in the innermost loop.

As aggregations are functions on individual matches, their costs are modeled as the num-
ber of estimated matches multiplied by the amount of work for the aggregation. The number
of estimated matches is already available from the cost model of the underlying system. The
amount of work for the aggregation can be estimated by profiling the application-specific
UDF to identify how aggregation time scales with the number of matches, or by analyzing

79

the aggregation operations. For profiling, a set of n dummy matches can be generated by
randomly selecting |V (P)| vertices n times, and then the time required to apply the UDF
to these n matches gets measured. Repeating this for varying n and integrating the result-
ing curve yields an approximation of how the aggregation scales. Alternatively, the cost of
aggregation for simple or well-known operations can be directly provided as hints to the
system. For instance, the counting aggregation is performed using a constant operation per
match, and hence incurs no additional cost. On the other hand, FSM application incurs
O(|V (G)|) cost to approximate the overheads of merging MNI tables.

Finally, for systems like Peregrine and BiGJoin [17] that do not use any cost model, we
compute pattern costs based on their pattern matching details using a similar approach as
AutoMine [146]. In addition, we improve the cost estimation using two novel enhancements.

• From profiling, we observed that highest degree data vertices (those in the 95th percentile)
contribute the majority (66–99%) of the matches and the majority of the execution time.
Hence, the graph model is restricted to the portion of the data graph comprising the
highest degree vertices.

• Since partial orders for symmetry breaking [93] impact the input size (e.g., adjacency
lists or indexed tuples) for the set operations or joins performed during matching, the
neighborhood size is estimated in terms of the expected number of smaller or higher
vertex id neighbors.

6.4 Transforming Results

The efficient alternative pattern set is given as input to the pattern matching engine. The
next step is to convert the matches generated for these alternative patterns into results
for the original query patterns (result transformation in Figure 6.3). As discussed in Sec-
tion 6.2.3, we use permutation functions (i.e., ϕ(p, q) in Eq. 6.1 and Eq. 6.2) that convert
the results based on isomorphic mappings from the query pattern to the alternative pat-
tern. For seamless conversion, our key insight is to permute the vertex ids in the pattern
instead of modifying the results so that the results get mapped for original patterns. We
will describe our result conversion strategies in Section 6.4.1 and Section 6.4.2.
Output Modes. Graph mining systems often employ different output modes for returning
matches that are suitable for different applications. For example, applications like FSM and
MC return the final aggregation values (counts, support values) in the end after all required
matches are found. On the other hand, applications like SE return each individual match
to the user function for further processing (e.g., filtering) as the matches are explored. To
handle these output requirements, our permutation functions can be employed to convert
the results either on-the-fly or after matching finishes.

80

Algorithm 2 Converting Aggregation Results
Input: Set of query patterns P , their alternative pattern set S,

and aggregation store A holding results of S
Output: Aggregation store R for P

1: procedure convertResults(P , S, A)
2: for each p ∈ P do
3: for each q ∈ alternative(S, p) do
4: for each q_key ∈ AggrKeyMap(q) do
5: for each f ∈ ϕ(p, q) do
6: p_key ← permute(q_key, f)
7: R[p_key]← reduce(R[p_key], A[q_key])
8: end for
9: end for

10: end for
11: end for
12: return R
13: end procedure

6.4.1 Post-Matching Conversion

In this case, results get converted after matching for the alternative patterns completes.
Then the converted results are returned to output.

Since the final results are often computed by application-specific aggregation functions,
one way to convert the results would be by directly modifying the aggregation functions
(e.g., map-reduce UDF) to simply change the mapping between results and patterns. While
such a change is easy, it still requires capturing the relationship between the query patterns
and their alternative patterns into aggregation functions.

To make the conversion process seamless to the application, we instead modify the
vertex ids in the patterns, which does not require modifying application-specific logic. This
is achieved by applying the permutation function on vertex ids of the alternative patterns.
By doing so, we simply invoke the aggregation operation on the query pattern, but with
permuted ids, which ends up correctly routing the aggregation results from alternative
patterns to the query patterns.

Algorithm 2 shows the result conversion process. The results for alternative patterns are
maintained in the aggregation store A as key-value pairs, where keys are of different types
depending on the application (e.g., patterns for SC, pattern vertices for MNI). To convert
the results (lines 5-8), the aggregation keys for the alternative pattern are permuted based
on the permutation function to obtain the key for input pattern, and then the aggregation
values for those keys are combined using the application’s aggregation function (reduce on
line 7).
Example. We illustrate how conversion happens for the MNI aggregation in FSM. To help
understand the context, the FSM application code is shown in Figure 6.7. In the process
function, the individual vertices are mapped to the respective pattern vertices, and the
reduce operation merges the set of pattern vertices (i.e., MNI columns).

81

void process (Pattern p, Match m) {
for (PatternVertex u : p. getVertices ())

map(u, m(u));
}
MNIColumn reduce (MNIColumn accumulator ,

MNIColumn new_value) {
return accumulator . merge (new_value);

}

Figure 6.7: FSM Application.

0 1 2 3

!!
!"

!# !#
!"

!"
!$

!$

2 3 0 1

!!
!"

!# !#
!"

!"
!$

!$

Keys (Pattern
Vertices)

Values (MNI
Columns)

Result for q Permuted Keys

0 1 2 3

!!
!$

!" !#
!$

!!

Partial Results for p

0 1 2 3

!#
!!

!" !#
!!

!#
!!

!"

Final Results for p

!"
!$

!$!$

!$

0

1

2

3

!! !"
!#
!# !"
!" !$

!$

Results for q
2

3

0

1

!! !"
!#
!# !"
!" !$

!$

Permuted Keys

0

1

2

3

!! !$
!"
!# !$
!!

Partial Results for p

!$
0

1

2

3

!# !!
!"
!# !!
!# !!

!"

Final Results for p
!" !$

!$
!$

"

Keys (Pattern
Vertices)

Values (MNI
Columns)

Figure 6.8: Converting MNI aggregation for FSM.

Figure 6.8 shows an example of result conversion. The permutation function permutes
the vertex ids for pattern q which results in a change in the mappings between keys (pattern
vertices) and values (MNI columns). Hence, for the results on top right, the column for vertex
0 gets remapped to the third column. Then, the aggregation function merges the columns
for p with the permuted aggregation.

6.4.2 On-the-Fly Conversion

Here, the results are converted as they get generated by the matching engine, and then the
converted results are sent down the application’s processing pipeline.

While we can employ the same strategy of converting patterns instead of converting the
results, it is possible to directly convert the match generated by the matching engine since
it is yet not been modified by the application-specific functions (i.e., converting the match
does not require application details). Algorithm 3 shows on-the-fly conversion of matches.
Instead of directly calling the application function with the alternative pattern q and its
match m, the permutation function is applied on m which generates the match for the query
pattern p. These are then supplied to the application function (process on line 6).

82

Algorithm 3 Converting Matches On-the-Fly
1: // Send alternative pattern q to matching engine
2: // Matching engine starts finding matches
3: // Matching engine generates match m for pattern q
4: for each f ∈ ϕ(p, q) do
5: m_permuted← permute(m, f)
6: process(p, m_permuted) /* Call UDF */
7: end for

pV5 pV6 pV7

pV1 pV2 pV4 pV5p3

pV8

pV8pV7pV6 pV9 pV1																			10

Figure 6.9: Vertex-induced patterns used in evaluation. The edge-induced variants do not
contain anti-edges.

6.5 Evaluation

Mining Systems and Implementation Details. We integrated Subgraph Morph-
ing in four state-of-the-art graph mining and subgraph matching systems: Peregrine,
AutoZero (an implementation of techniques in both AutoMine [146] and GraphZero [145]),
GraphPi [192], and BiGJoin [17]. Subgraph Morphing is generally applicable to other
mining and subgraph matching systems like [95, 144] as well. Systems like Arabesque [205],
Fractal [77] and others [45, 219, 52] perform generic BFS or DFS explorations that do not
exploit the pattern structure in order to optimize exploration. Hence, they deliver similar
performance across different patterns of same size, providing little or no opportunity to
exploit performance difference across patterns.

We evaluate using the available mining capabilities of each of the four systems to cover all
cases. Hence, we use Peregrine and AutoZero for counting motifs and patterns, GraphPi
and BiGJoin when counting vertex-induced patterns with a UDF to filter, and Peregrine
for subgraph enumeration and FSM.

Subgraph Morphing was added in form of two modules external to the subgraph match-
ing engines in these systems (see Figure 6.3), i.e., the subgraph matching strategies and
optimizations in these systems were left untouched.

AutoMine [146] uses a compilation-based approach to generate matching schedules and
GraphZero [145] enhances the schedules using symmetry breaking (similar to [93]). Since
neither AutoMine nor GraphZero have source code available, we developed an in-house ver-
sion by faithfully implementing the symmetry breaking restrictions and performance model
for choosing individual pattern schedules from [145]. Unlike AutoMine however, GraphZero
does not merge the schedules of multiple input patterns. Hence we augmented our in-
house implementation with schedule-merging, so that overlapping loops in different pattern
schedules are merged together, and conflicting restrictions are applied separately to avoid
under-counting. We name this augmented implementation AutoZero. AutoZero directly gen-

83

G |V (G)| |E(G)| Num. Max. Avg.
Labels Deg. Deg.

(MI) MiCo [82] 100K 1M 29 1359 22
(MG) MAG [110] 726K 5.4M 349 4779 14
(PR) Products [110] 2.4M 61M 47 17481 52
(OK) Orkut [225] 3M 117M — 33133 76
(FR) Friendster [225] 65M 1.8B — 5214 55

Figure 6.10: Real-world graphs used in evaluation.

MIMGPR OK FR MIMGPR OK FR MIMGPR

1
2
4
8
16
32

Sp
ee
du
p

3-MC 4-MC 5-MC

0.
07 0.
84 2.
46

10
.5
7

14
3.
90

3.
30

3.
44 20

0.
78

16
82
.4
4

39
56
2.
60

30
09
.6
0

23
40
.4
9

56
05
0.
20

(a) Peregrine

MIMGPR OK FR MIMGPR OK

1
2
4
8

Sp
ee
du
p

3-MC 4-MC 5-MC
MI

0.
04

0.
16 4.
53

13
.8
4

25
7.
34

6.
68

45
.7
1

25
06
.1
9

19
36
9.
90

63
80
.9
2

(b) AutoZero

Figure 6.11: Performance improvements from Subgraph Morphing in Peregrine & Au-
toZero for Motif Counting relative to baseline system without morphing; absolute times (in
seconds) for when Subgraph Morphing is enabled are shown on top of the bars. Red bars
indicate the cases where baseline did not finish within 24 hours (i.e., speedups for those
cases are underestimated).

erates C++ code for subgraph matching schedules, and invokes g++ version 10 to compile it.
Across all the experiments, we did not measure the C++ code generation and compilation
time for AutoZero.
Experimental Setup. We investigate the impact of Subgraph Morphing on the per-
formance bottlenecks identified in Section 6.1 through experiments on a wide array of ap-
plications: Motif Counting (MC) of size 3 to 5 vertices, FSM with size-3 and -4, as well as
Subgraph Counting (SC) and Enumeration (SE) with patterns in Figure 6.9. Most of these
patterns have been used in state-of-the-art evaluations [77, 192], and we have also included
some larger and denser patterns in order to stress the systems.

Figure 6.10 lists the data graphs used in our evaluation. MiCo (MI) is a co-authorship
graph labeled with each author’s research field. MAG (MG) is an academic graph composed
of several vertex types. We use the portion representing citations between papers, where
papers are labeled by the venue they were published in. Products (PR) is a co-purchasing
network, where vertices represent products, labeled by their category, and edges indicate
two products are purchased together. Orkut (OK) and Friendster (FR) are unlabeled social
network graphs where edges represent friendships between users. MiCo, Orkut and Friend-
ster have been used to evaluate previous systems [205, 77, 146, 95], while MAG and Products
are recent graph datasets designed to evaluate data mining tasks [110].

84

MI MG PR OK FR MI MG PR

1
2
4
8

16

Se
tO

p.
R
ed
uc
tio

n

3-MC 4-MC

0.
06 0.
63

2.
19

9.
92

13
7.
01

2.
97

2.
65

18
2.
23

(a) Peregrine

MI MG PR OK FR MI MG PR

1
2
4
8

16

Se
tO

p.
R
ed
uc
tio

n

3-MC 4-MC

0.
02 0.
07

2.
66

8.
99

31
.3
4

2.
91

11
.2
6

63
4.
70

(b) AutoZero

Figure 6.12: Reductions in set operation times from Subgraph Morphing for Motif Count-
ing in Peregrine and AutoZero relative to baseline system without morphing. Bars are
marked with mean absolute times (in seconds) from executions where Subgraph Morph-
ing is enabled.

MIMGPROKFRMIMGPROKFRMIMGPROKFRMIMGPROKMIMGPROKMIMGPROKMI MI MI

1
2
4
8
16

Sp
ee
du
p

pV1 pV2 {pV1 , pV2 } pV4 pV5 {pV4 , pV5 } pV6 pV7 pV8

1.
16

0.
75 52

.5
6

17
7.
79

10
60
.8
2

0.
75

0.
44 44
.1
1

15
6.
99

69
1.
32 0.
85

0.
75 52

.5
6

11
4.
89

10
60
.8
2

65
.6
2

12
.0
1

43
05
.1
9

94
89
.7
9

31
.9
8
9.
56

19
04
5.
18

27
01
4.
10

88
.0
8

35
.8
9 13

88
7.
20

27
01
4.
10

47
59
.5
5

50
59
.9
2

35
26
.5
9

(a) Speedup

MGPRMGPRMGPR

1
2
4
8

Se
tO

p.
R
ed
uc
tio

n

pV1 pV2 pV4

0.
54 46

.9
8

0.
37 41
.6
5

10
.7
5

40
26

.8
0

(b) Reduction in
set operation times.

Figure 6.13: Performance improvements from Subgraph Morphing in Peregrine for
Subgraph Counting.

All our experiments were run on a Google Cloud n2-highcpu-32 instance, equipped
with a 2.8GHz Intel Cascade Lake processor with 32 logical cores and 32GB of RAM.
Across all experiments, we measured the end-to-end execution time, which includes input
pattern transformation, mining computation, as well as result transformation. Since pattern
transformation is done on the input patterns, we observed this phase took little time—for
instance, transforming patterns of size 4 and 5 took at most 0.7 ms and 7.2 ms, respectively,
whereas finding matches for those patterns on large graphs often takes 10s-1000s of seconds.

6.5.1 Morphing for Reducing Set Operation Time

Since counting is heavily bottlenecked by set operations in both Peregrine and AutoZero,
we use Motif Counting (MC) as a representative benchmark. Figure 6.11 summarizes
the results. Figure 6.12 shows that execution time for motif counting is dominated by set
operations.

Compared to the baseline systems, applying Subgraph Morphing reduced set oper-
ation time in AutoZero and Peregrine by 3 − 22× and 3.5 − 30×, respectively. This is
because morphing the vertex-induced patterns in Motif Counting results in alternative pat-

85

G With Morphing

3-FSM MI 71.3-195.1s (1.29×)
MG 89.22s-2.64h (1.94×)
PR 0.53-5.65h (2.26×)

4-FSM MI 4.48-4.77h (3.61×)

Figure 6.14: Performance improvements from Subgraph Morphing in Peregrine for
Frequent Subgraph Mining. Minimum speedups are reported in brackets. Note that 4-
FSM on larger graphs did not finish in 24 hours since the complexity grows exponentially,
requiring more resources (more machines and time).

tern sets which contain fewer anti-edges. While anti-edges actively prune the search space
and reduce the number of matches generated, each anti-edge necessitates an additional set
operation (set difference) in the matching plan. Our selection algorithm identifies that the
additional time required for set operations is not justified by the reduction in the number
of matches since the counting aggregation is inexpensive.

The reduced set operation times translate to significant speedups in overall execution
times, as seen in Figure 6.11a and Figure 6.11b. Subgraph Morphing yields a maximum
34× speedup in Peregrine for 4-MC on PR. The smallest speedup with Peregrine, 1.5×
for 5-MC on PR, is an underestimation since the baseline Peregrine (without Subgraph
Morphing) did not finish counting even half the patterns in 24 hours. In AutoZero, Sub-
graph Morphing yields 2−10× speedups for motif counting, including a conservative 5×
speedup in the OK 4-MC case, which the baseline system could not complete in 24 hours.
Subgraph Counting (SC). Motif Counting represents a best-case scenario for Subgraph
Morphing, since all superpatterns are already contained in the input pattern set. Here we
examine the converse situation in Figure 6.13(a-b), matching single patterns and pairs of
patterns from Figure 6.9, such that few or no superpatterns are part of the input set. We use
Peregrine for these experiments, since it matches patterns one by one, further exacerbat-
ing the cost of extra superpatterns. Due to limited space, we skip AutoZero, which gives the
best case for Subgraph Morphing since merged matching plans significantly reduce the
cost of extra superpatterns. Even with higher costs for superpatterns, Figure 6.13a shows
that Subgraph Morphing speeds up Peregrine executions by 1.2 − 24×. The greatest
speedup came from the large pV

8 pattern, which Peregrine could not mine without mor-
phing. As expected, set operations are still the main bottleneck when matching individual
patterns, and Subgraph Morphing reduces the time spent on them by 1.3 − 10× (shown
in Figure 6.13b), despite having to match extra patterns.

6.5.2 Morphing for Reducing UDF Overheads

We evaluate the effectiveness of Subgraph Morphing to address the key bottleneck in
Frequent Subgraph Mining (FSM) and filter-based mining.

86

MIMGPROKMIMGPROKMIMGPROKMIMGPR MIMGPR

1

2

4

8

16

Sp
ee
du
p

pV1 {pV1 , pV2 } pV4 pV5 {pV4 , pV5 }

6.
89

2.
38 11
68
.6
2

26
79
.8
0

32
95
.8
7

1.
98 0.
51

12
.4
2 43

.9
3

50
.0
2 34
1.
95

74
.9
2

86
24
.6
1

31
75
7.
20

37
20
7.
80

83
0.
60

14
2.
04

12
76
5.
60

(a) GraphPi

p
V

1 p
V

2
{p

V
1
, p

V
2
}

1
2
4
8

Sp
ee

du
p

29
1.
18

18
6.
00 29
1.
18

(b) BiGJoin

Figure 6.15: Performance improvements from Subgraph Morphing in GraphPi and
BiGJoin.

Branches Branch Misses

{p
V

1
, p

V
2
}

{p
V

4
, p

V
5
}

{p
V

1
, p

V
2
}

{p
V

4
, p

V
5
}

1
4

16
64

R
ed
uc
tio

n

MG PR

(a) GraphPi
p
V

1 p
V

2

{p
V

1
, p

V
2
}

1

4

16

R
ed

uc
tio

n

MI

(b) BiGJoin

Figure 6.16: Reduction in branches and branch misses in GraphPi and BiGJoin relative to
execution without Subgraph Morphing.

Reducing UDF overheads in FSM. Figure 6.14 summarizes the performance results
when employing Subgraph Morphing in Peregrine for FSM. Subgraph Morphing
alleviates the UDF bottleneck in 4-FSM on MiCo by morphing the patterns predicted to
be most frequent into vertex-induced variants which will have fewer matches. For example,
the edge-induced 4-Star pattern with all of its vertices sharing the most frequent label in
the data graph is one of the most expensive patterns to mine in MiCo FSM due to the few
constraints in the pattern combined with the frequent labeling, leading to over 5.7B matches.
Morphing it generates 3 additional superpatterns (Tailed Triangle, Chordal 4-Cycle, and
4-Clique, all vertex-induced and with the same labeling), but results in 1.4B fewer matches,
and as many fewer UDF calls (a reduction of 24%).

Similarly for other expensive patterns, the morphed patterns saved over 13 hours of
time spent on UDFs while spending only 1 additional hour on set operations, yielding 3.6×
speedup. 3-FSM on MiCo shows the least improvement, as both the patterns and the data
graph are small, making the input patterns easy to match. Note that FSM operates on
labeled patterns, which generally require more superpatterns during morphing.

87

1 2 3 4
Speedup

MI

PR
4V E

pE
4

MI
1075.88

43.89
23776.28

(a) On-the-Fly

1 2 4 8 16
UDF Speedup

MI

PR
4V E

pE
4

MI
116.26

13.55
10204.51

(b) On-the-Fly

Figure 6.17: Performance improvements from Subgraph Morphing in Peregrine for
Subgraph Enumeration with On-the-Fly conversion (absolute times in seconds).

Eliminating Filter UDFs. We apply Subgraph Morphing to vertex-induced subgraph
matching with GraphPi [192] and BiGJoin [17]. These systems lack native support for
mining vertex-induced patterns; hence, extracting vertex-induced results requires matching
the edge-induced variants and using a Filter UDF to remove matches with extra edges.
With Subgraph Morphing, we compute vertex-induced results with edge-induced pat-
terns without invoking any UDFs.

As shown in Figure 6.15, Subgraph Morphing significantly speeds up GraphPi and
BiGJoin, by 1.4 − 18× and 6.3 − 13.3× respectively. This is because the native matching
capabilities in these systems outweigh the expensive edge lookups in Filter UDFs even when
multiple patterns must be matched.

We observed that 98% of execution time in the baseline system (without Subgraph
Morphing) was spent in UDF calls. Drilling deeper reveals that the poor performance is
primarily due to branches incurred on every match by the Filter UDF. Figure 6.16a and
Figure 6.16b show that eliminating the UDFs using Subgraph Morphing reduces the
number of branch misses by 30× on average (1.7 − 88×).

6.5.3 On-the-Fly Conversion

We evaluate the benefits of Subgraph Morphing for Subgraph Enumeration (SE)
where on-the-fly conversion is employed to handle a stream of matches. We used Peregrine
to enumerate matches comprised of vertices whose average weight is within a standard de-
viation of the distribution mean (vertex weights were assigned from a normal distribution).
All edge-induced 4-vertex patterns (4VE) on MiCo and Products, as well as pE

4 on MiCo
were used in this experiment. Neither pE

4 nor its alternative pattern sets could be matched
on Products within 24 hours.

Figure 6.17 summarizes the results. Since the filter is only dependent on the matched
vertices, Subgraph Morphing trades the time spent filtering matches for additional set
operations by morphing into vertex-induced patterns which have fewer matches, and then
converting the matches that pass the filter on-the-fly. This reduces the time spent in UDFs
by 5 − 16×, and as a result, speeds up the execution by 2.6 − 4×.

88

PR OK PR OK0
2
4
6

Sp
ee
du
p

pV
9 pV

10

83
.7
2 25
3.
42

24
.6
2

87
.4
6

(a) Peregrine

PR OK PR OK0
2
4
6

Sp
ee
du
p

pV
9 pV

10

71
.1
6

37
8.
68

16
.8
1

78
.7
4

(b) GraphPi

Figure 6.18: Performance improvements from Subgraph Morphing for large patterns.

0 125 250
Alternative Pattern Set

2500

5000

7500

E
xe
cu

tio
n
Ti
m
e

Figure 6.19: The space of alternative pattern sets for 5-motifs and their performance (in
seconds) using Peregrine on MiCo graph. The input pattern set is marked by the cross
and the set selected by the cost model is marked by the triangle.

6.5.4 Scaling to Large Patterns

We use patterns p9 and p10 that contain 7 vertices. Such large patterns are uncommon in
evaluations of graph mining systems. This is because graph mining workloads scale exponen-
tially with pattern size (theoretical bottleneck due to NP-complete nature), making large
patterns difficult to mine on single machine systems even for medium-sized data graphs.
Since our goal is to show the effectiveness of Subgraph Morphing on large pattern work-
loads, we control the data graph size to limit the workload size so that executions can finish
on a single machine in reasonable time. We do so by partitioning the Products and Orkut
graphs using METIS [121], and using Peregrine and GraphPi to mine pV

9 and pV
10 within

the partitions. This way, the edges between partitions are dropped out, which reduces the
workload size.

As shown in Figure 6.18a and Figure 6.18b, morphing speeds up enumeration on Pere-
grine by 4 − 7×, while it also improves enumeration on GraphPi by 2 − 5×. We observed
that the analyses from Section 6.5.1 and Section 6.5.2 apply to large patterns as well. With
Subgraph Morphing incorporated, Peregrine spent 3−11× less time on set operations,
while GraphPi incurred 2.2 − 46× fewer branches.

6.5.5 Cost Model Effectiveness

A given input pattern can have exponentially many alternative sets, leading to potentially
large gaps in performance. We study the effectiveness of our cost model in identifying the
right alternative pattern set that delivers performance. Figure 6.19 shows the performance
of 250 alternative pattern sets for 5-motif counting on MiCo, including the query pattern

89

set and the set chosen by the cost model. The optimal set is over 3× faster than the slowest.
The cost model chose an alternative pattern set which performs within 10% of the optimal
one.

Several alternative sets perform worse than the query set; while this is visible in Fig-
ure 6.19 for 5-motif counting, it is especially clear in FSM which involves many patterns.
For 3-FSM on PR with support threshold 140K, blindly morphing all input patterns leads
to an execution time of over 22 hours, whereas the query pattern set takes 14 hours and
the cost model selects a set taking only 5.65 hours.

6.6 Conclusion

We presented Subgraph Morphing, a general technique to accelerate graph mining work-
loads across various graph mining systems. We exposed key factors that impact the per-
formance of graph mining workloads, and observed there is no singular bottleneck that is
common across the different workloads running on different graph mining systems. Sub-
graph Morphing exploits performance differences across pattern structures while also
incorporating key system-level and application-level characteristics to deliver high perfor-
mance. We formalized Subgraph Morphing and developed efficient strategies to enable
it in practice. Our extensive evaluation showed promising results.

90

Chapter 7

OsirisBFT: Application Semantics
in Distributed Architecture

This chapter explores the potential of application semantics to address crucial and ubiq-
uitous system design challenges beyond those covered by the static single-machine setting
used in Peregrine and the system-agnostic approach of Subgraph Morphing. Namely,
this chapter centres distributed graph mining on dynamically changing data in order to ex-
pose scalability and fault tolerance challenges intrinsic to developing available and reliable
high-performance analytics services.

Many graph mining use cases take place in an online setting, where application values
must be maintained as the underlying dataset changes. For instance, the graph anomaly de-
tection application seeks to identify anomalous structures in a rapidly changing graph [63].
Because individual changes (i.e., edge additions or deletions) only have local effects on sub-
graph structure, processing the whole graph in response to each modification is redundant.
Instead, incremental graph mining applications compute only the change in aggregation val-
ues by computing the difference that a graph modification causes in the application-defined
interesting subgraph set S [34, 17, 125, 120].

To magnify the scalability and fault tolerance challenges further, we target the Byzantine
failure model, where faulty machines can behave arbitrarily. Although incremental graph
mining applications are common in various settings, Byzantine failures are seldom consid-
ered despite occurring frequently in practice [153, 163, 119]. For instance, applications in set-
tings like cybersecurity [112], business intelligence [204], and fraud detection [207] are open
to threats where adversaries are incentivized to cause failures in order to gain access to user
data, create outages, or commit unchecked fraud. Similarly, accidental Byzantine failures
are also pernicious. Physical failures like memory corruption can create subtle flaws in the
output of a computation even despite the presence of Error-Correcting Codes [188, 153, 136],
with significant humanitarian [155] and legal [57] consequences.
Use Case: Graph Anomaly Detection. This application maintains an up-to-date ver-
sion of the graph using a continuous stream of edge updates (insertion/deletion of edges),

91

updateGraph(graph, edgeUpdates) {
 for (u in edgeUpdates)
 if (u.addition) graph.add(u.edge);
 else network.delete(u.edge);
}

detectAnomaly(graph, edgeUpdates) {
 result = {}; p = anomalyPattern();
 for (u in edgeUpdates)
 result += match(graph, u.edge, p);
 return result;
}

Updates

Computations

Multiversioned
Data Store

Input
Tasks

Output
Records

W
or

ke
rs

Figure 7.1: Anomaly Detection. Update tasks modify the data store and computation
tasks perform pattern matching on the modified graph.

and performs pattern matching on the updated portion of the graph to identify matches
of anomalous patterns [63]. As shown in Figure 7.1, the updates are applied to a mul-
tiversioned data store and multiple tasks perform pattern matching in parallel using the
appropriate versions of the network. The pattern matching computation (detectAnomaly()
in Figure 7.1) is orders of magnitude more expensive than performing edge updates in the
data store (updateNetwork() in Figure 7.1). Graph anomaly detection is a strong repre-
sentative for incremental graph mining applications since it captures the core computation
(i.e., computing matches) and generates large output (i.e., all matches of an anomalous
pattern) to quickly expose system scalability bottlenecks and will be used as the primary
example throughout this chapter.

Here, Byzantine failures can affect the graph in the data store as well as the pattern
matching computation. In the first situation, faulty workers can apply incorrect/malicious
edge updates resulting in inconsistent views of the graph, hence generating unreliable results
computed from inconsistent data. To safeguard against such failures, various Byzantine
fault tolerant protocols for managing state have been developed, for example Kauri [160],
Basil [200] and others [41, 1, 66, 129, 106, 229, 19, 126, 8]. These protocols target applications
composed of read/write transactions where ordering requests via BFT consensus is the major
bottleneck.

In the second situation, even if the data store is maintained correctly, faulty workers
performing pattern matching on correct data can result in incorrect output. For this, solu-
tions like Medusa [65] and others [198, 64, 169, 157] enable BFT for applications dominated
by computation instead of consensus. Like these works, this chapter targets scalable com-
putation and high output record throughput.

Unlike traditional crash failures, Byzantine failures cannot be overcome with straight-
forward crash recovery mechanisms like checkpointing, because faulty processes can silently
corrupt intermediate results. As a result, at the heart of these BFT solutions are repli-
cated state machine protocols (RSM) that replicate both application state and task exe-
cution [186]. Specifically, workers are divided into independent subsets of replicas that all

92

maintain the same application state and execute the same tasks, such that different subsets
maintain distinct partitions of application state and execute different tasks in parallel. In
such an approach, safety (i.e., results should be correct) and liveness (i.e., downstream pro-
cesses should receive results) are guaranteed if all subsets contain O(f) workers and at most
f workers in each subset are faulty, as a majority of replicas will compute the correct re-
sult. However, replicating application tasks in such RSM-based systems imposes significant
theoretical and practical limits on scalability and processing throughput.
Limited Task Capacity. Replication theoretically limits the number of tasks that can
be executed in parallel to a fraction of the cluster’s actual hardware capacity. A cluster of
n workers can execute at most ⌊n/(2f + 1)⌋† replicated tasks in parallel. This means even
with minimum fault tolerance f = 1, processing with RSM requires 3× the computation
resources as a regular execution. Figure 7.2a shows the number of tasks that can be executed
in parallel with RSM as a function of cluster size, and we corroborate this analysis by
measuring the processing throughput in terms of number of result records generated per
second for Anomaly Detection in Figure 7.2b. As seen, RSM-based processing on 32 nodes
with f = 1 achieves similar throughput to only 8 nodes without fault tolerance.
Local Failure Bounds. Scaling an RSM-based system in practice requires that the fail-
ure bounds of each replica group can be realistically achieved. In traditional Byzantine
fault tolerant applications like data stores which run on small clusters, techniques like n-
version programming and geo-distribution can be used to prevent correlated failures from
quickly overwhelming cluster redundancy and compromising safety or liveness. However,
such solutions quickly become cost-prohibitive for large analytics clusters.
Key Insight. The computation in incremental graph mining applications involves multi-
ple steps that are performed iteratively (i.e., matching the pattern step-by-step). Hence,
computation tasks are often orders of magnitude more expensive than state updates since
the latter only involve agreement on the ordering of updates and modifying the underlying
graph. Although incremental graph mining tasks are time-consuming to execute, their re-
sults can be verified much more quickly. This is because verification simply involves checking
whether the results satisfy application semantics (e.g., whether the reported anomalous sub-
graphs indeed match the pattern) which is much simpler than computing the solution itself.
Hence, with verification being much faster than the original computation, BFT executions
can be guaranteed without replicating the computation by judiciously verifying results.
Our Approach. OsirisBFT separates state management from computation task execution
and explores the possibility of BFT without replicating expensive graph mining tasks. The
result is a distributed BFT architecture for incremental graph mining applications backed
by two components: a BFT data store for managing global state, and verification-based

†⌊n/(2f + 1)⌋ tasks using non-equivocation from modern RDMA networks [6] or trusted hardware [135];
otherwise the bound degrades to ⌊n/(3f + 1)⌋.

93

f=0 f=1 f=2

1

1 25 50 75 100125
n

25

75

125

Pa
ra
lle

lT
as
ks

1
(a) Task Capacity

1 2 4 8 16 32
n

0

50M

100M

R
ec
or
ds

/s
ec

1
(b) Throughput

Figure 7.2: Scaling of RSM-based processing for Anomaly Detection (i.e., with
detectAnomaly() replicated) assuming at most f failures per replica group.

processing for application computation. Prior solutions [6, 126, 28, 229] already provide
efficient BFT state management as discussed above. We incorporate an existing RSM-
based BFT design [6] for our data store, and primarily focus on developing an efficient
verification-based processing architecture.
OsirisBFT. OsirisBFT decouples task computation from fault tolerance by offloading
the responsibility of detecting faults to a special subset of workers called verifiers. Regular
workers execute computation tasks, and their results are analyzed by verifiers to protect
against failures. Hence, workers executing computation tasks need not be replicated to
ensure safety, enabling scalable execution. Furthermore, verifiers check the generated results
independently, and only perform consensus to linearize input tasks. Hence, OsirisBFT can
execute n − O(f) parallel tasks in a cluster with n workers, as opposed to n/O(f) in RSM.

A verification-based BFT processing architecture seems promising, as reducing replica-
tion addresses both the task capacity and failure bound assumptions that hinder scalability.
However, realizing OsirisBFT in practice poses several challenges.

The first challenge is how to distinguish Byzantine executions from graceful executions
that are not impacted by Byzantine failures? Byzantine failures can impact the execution and
violate the application semantics in various ways (e.g., partially executing tasks, repeatedly
executing the same task, simply outputting results that appear valid but do not satisfy
the task requirements, w.r.t.). Developing custom verification protocols to identify these
different behaviors can easily become intractable, especially since several of these issues
require understanding the application semantics to distinguish a Byzantine behavior from
a correct one.

To address this, we develop an output failure model that captures how Byzantine fail-
ures impact the application results. Our model groups all possible application failures into
three classes of output failures. We then formalize verifiability properties required to detect
each class of output failures, and develop verification operators that allow our processing
architecture to capture the required incremental graph mining application semantics so
that verifiers can safeguard against all classes of output failures. As further evidence for the
power of application-awareness, we show that output failures, verifiability properties, and

94

verification operators all apply not only to incremental graph mining applications, but to a
broader class of task-parallel applications.

The second challenge is how to perform verification robustly and efficiently? While verifi-
cation operators capture faults that are observable from application results, verifiers them-
selves can be faulty, which can in turn cause complex failures even if workers correctly
execute their tasks.

For verification that is both efficient and resilient, we develop robust and lightweight
protocols. Verifiers certify the application results using the verification operators, with zero
coordination among the verifiers during graceful executions. To achieve robustness in our
verification pipeline, we rely on redundancy in communication between verifiers and other
actors in OsirisBFT. Our careful use of cryptography, timeouts, and limited use of heavy
communication primitives like non-equivocating multicast capture complex failure cases
while retaining efficiency when processes are well-behaved.

The final challenge is how to maintain resource utilization and processing throughput
as processing workload varies over time? As processing workload changes over time, tasks
demanding high computation can keep workers busy even though the verification workload
remains low. On the other hand, failed workers leaving the system can result in throughput
drops that can persist in the remaining execution. We design a dynamic role-switching strat-
egy to improve resource utilization and processing throughput across different processing
conditions.
Results. To the best of our knowledge, this thesis provides the first treatment of en-
abling Byzantine fault tolerance for incremental graph mining applications (as well as task-
parallel applications more broadly) without replicating application computation. Osiris-
BFT is backed by safety and liveness proofs to ensure correctness under all circumstances
and progress even in presence of Byzantine failures. We evaluated OsirisBFT with graph
anomaly detection and two other distributed task-parallel applications, as well as across
different processing workloads. Our results show that OsirisBFT delivers high processing
throughput and better scalability compared to replicated processing, and it scales compa-
rably to a baseline without any fault tolerance. Importantly, OsirisBFT overcomes the
performance overheads from ensuring fault tolerance by simply scaling out.

7.1 Overview of OsirisBFT

The system is modeled as a pipeline with three steps: (i) input processes IP generate or in-
gest tasks and distribute them downstream; (ii) worker processes WP execute the tasks and
output a sequence of records; and, (iii) output processes OP receive the results. IP and OP

can overlap. Tasks can involve state updates (e.g., updateNetwork() in Figure 7.1), compu-
tation (e.g., detectAnomaly() in Figure 7.1), or both. This pipeline follows the general ar-

95

VPCO

WP

EP

IP OP
2f+1

Tasks Verified
Records

Linearized
Tasks Records

VPi

VPj

Figure 7.3: Verification-based processing architecture.
chitecture of existing distributed incremental graph mining systems like Delta-BiGJoin [17]
and Tesseract [34].

Figure 7.3 shows the verifiable processing architecture. WP is divided into two sub-
clusters: the execution cluster EP and the verifier clusters V P . The execution pro-
cesses (or simply, executors) execute computation tasks and output records, whereas the
verifier processes (or simply, verifiers) deal with verification of the generated records. A
computation task is executed on each input exactly once by an executor in EP (i.e., no
task replication). V P is partitioned further into k independent Byzantine fault tolerant
sub-clusters V P0...V Pk−1 with each |V Pi| ≥ 2f + 1 (0 ≤ i < k). One of the verifier sub-
clusters is arbitrarily chosen to be responsible for performing consensus to linearize tasks
and coordinating the remaining processes throughout the entire execution; we refer to this
sub-cluster as the coordinator V PCO.
State Management. The state management layer resembles the learner architecture [105].
For simplicity and maximal use of hardware resources, the application state is colocated with
WP . As we discuss later, we make no assumptions about failures in EP . To safely perform
concurrent state updates, the coordinator sub-cluster V PCO linearizes tasks to enforce a
global order on state updates, and keeps the rest of WP appraised so correct processes can
maintain fresh, globally consistent copies of their state. This design avoids inflating the cost
of queries with read requests to a disaggregated storage system or cross-shard transactions
in a sharded solution by ensuring all processes maintain a local copy of the state, since
analytics queries frequently perform reads.
Verifiable Processing. OsirisBFT enables scalability by placing all responsibility for
Byzantine fault tolerance on V P , freeing EP to execute tasks without overheads. Tasks
flow from IP to the coordinator V PCO. V PCO linearizes the tasks and broadcasts state
updates to WP while distributing computation tasks among EP . State updates mutate
local application state, and computation tasks operate on the local state to produce output
records. While every state update is sent to all of WP , each computation task is assigned to
a single executor at a time and reassigned only if a failure is suspected. Then, the results of
computation tasks flow from EP to V P to OP . Each output record is sent to 2f +1 verifiers
in a Byzantine fault tolerant sub-cluster V Pi for verification to ensure output processes only
observe correct records.

96

Computation
Replication

Computation
Scalability

Communication
Replication

Faults
Tolerated

ZFT 1 |WP | 1 0
RCP 2f + 1 |WP |/O(f) 1

∑︁
W Pi

f

OsirisBFT 1 |WP | − O(f) 2f + 1 |EP | +
∑︁

V Pi
f

Table 7.1: Performance and fault tolerance of OsirisBFT compared to replicated
computation strategy (RCP) and a baseline with no fault tolerance (ZFT).

Since only verifiers interact with the downstream and upstream processes, correct pro-
cesses in IP and OP never observe failures in EP , even though computation tasks are never
replicated.
Computation-Communication Tradeoff. Table 7.1 shows the computation redundancy,
the communication redundancy, the fault tolerance, and the computation scalability pro-
vided by OsirisBFT, compared with the RSM-based replicated computation strategy
(RCP) where WP is divided into sub-clusters WPi of 2f + 1 processes each, and com-
putation is replicated in all processes in a sub-cluster.

OsirisBFT optimizes for application computations. It favors replicating communication
rather than computation when possible, leveraging ample bandwidth in high performance
networks to maximize utilization of cluster resources. Each output record is replicated over
the network to 2f +1 verifiers in V Pi, and in exchange, computation tasks are not replicated
in graceful executions.

Hence, O(f) processes verify records while |WP | − O(f) processes execute tasks. The
number of verifier sub-clusters can be kept small relative to |WP |, hence achieving higher
performance than RCP by not replicating the expensive application computation, and only
replicating the lightweight verification. Moreover, OsirisBFT tolerates faults more freely,
since no executor is assumed correct. Each V Pi tolerates f failures (similar to WPi in
RCP); in addition, OsirisBFT tolerates complete failure of EP . Hence executors, and the
application, can scale independently of f .
Throughput-Latency Tradeoff. OsirisBFT adopts a throughput-focused architecture
oriented toward use cases where input tasks or output records pass through the system
at high volumes. When there are fewer active computation tasks than there are available
workers and the application produces little output, verifying results introduces additional
latency with no benefit to throughput while a replicated architecture could communicate
results directly to downstream processes. By concentrating on throughput, OsirisBFT
scales far better than replicated-compute processing when executing incremental graph
mining and other large-scale task-parallel applications, where the arrival rate of input tasks
and the output rate of records can quickly saturate system resources.

97

7.2 System Model

Service Guarantees. OsirisBFT adopts the Byzantine failure model, where processes
can behave arbitrarily, including crashes, adversarial failures, and coordination between
malicious processes. We define safety and liveness to limit the impact of Byzantine faults
in WP . For all i, if at most f processes in V Pi fail, and V Pi contains 2f + 1 processes
that can verify output records from other workers, OsirisBFT is linearizable (safety): all
correct OP observe records corresponding to a legal sequential execution of correct tasks
submitted by IP . Furthermore, all correct OP eventually observe results for every task
submitted by IP (liveness). Note that safety is not compromised even if all processes in EP

are faulty. However, the system is also bound by assumptions made by its state management
layer. As mentioned above, we assume the state is managed by the Byzantine fault tolerant
V P processes, and EP learn of state updates from V P . If state must be safely stored on
EP using a different approach then additional assumptions about failures in EP may be
necessary. We make no assumptions about the number of failures in IP or OP .

We assume that adversaries have finite resources proportionate to correct processes, and
cannot overwhelm correct processes with network traffic or break cryptographic primitives
like digital signatures. Hence by authenticating all communication, correct processes cannot
be impersonated.

Safety can be guaranteed if the system is asynchronous, and we make the standard
assumptions from previous work [41, 229, 200, 160] regarding partial synchrony for liveness:
there is some known ∆ and unknown global synchronization time (GST) such that after
GST, all messages between correct processes arrive with maximum latency ∆ [78].
Communication Primitives. To achieve fault tolerance with 2f + 1 processes in a sub-
cluster instead of the well-known lower bound of 3f +1 processes [36], our techniques rely on
a multicast primitive that guarantees non-equivocation of certain messages (e.g., Reliable
Broadcast using RDMA [6] or trusted hardware [135]). In conjunction with digital signa-
tures, non-equivocating multicast enables atomic delivery of a message to 2f + 1 processes
where f are faulty [59]. Such primitives are relatively heavyweight, and hence they are used
sparingly. For situations where non-equivocating multicast is not available, OsirisBFT can
operate with 3f + 1 processes in each sub-cluster. All other messages use reliable links that
guarantee messages are not dropped or reordered (e.g., using RDMA RC protocol [118]).

7.3 Identifying Application Faults

OsirisBFT detects violations due to Byzantine failures by verifying the output records
produced by executors. In this section, we model the impact of Byzantine failures on appli-
cation results and develop verification operators to efficiently validate the records returned
by executors.

98

7.3.1 Incremental Graph Mining

Incremental Application Semantics. A graph mining application App is incremental
if it is possible to compute the change in value of App(g) in response to a change in g.
This chapter centres incremental graph mining applications as its primary focus, but the
techniques developed here apply equally to the broader class of task-parallel applications
described in Section 7.3.5.

Consider a graph mining application App as defined by Eq. 2.1. Let g0 be an initial data
graph, let g1, g2, . . . be a series of distinct graphs, and let Si ⊆ Sgi be the subgraph set
processed by App(gi). Since gi and gi−1 are distinct, there is a non-empty set containing
the edges present in gi but not gi−1 and the edges present in gi−1 but not gi, denoted by
gi△gi−1 (following the notation for symmetric difference of sets). For an aggregation ⟨R, ⊕⟩
forming an abelian group†, we define

App(gi△gi−1) =
⨁︂

s∈Si\Si−1

ν(s) ⊕
⨁︂

s∈Si−1\Si

−ν(s)

where −ν(s) is the inverse of ν(s) in R. Then for i > 0, an incremental graph mining
application can be written

App(gi) = App(gi−1) ⊕ App(gi△gi−1).

Example 7.3.1 (Anomaly Detection). Anomaly detection is a form of pure subgraph
matching, with R = P(Sgi), and ν(s) = s. To ensure that App(gi△gi−1) is well-defined,
the aggregation must form an abelian group. Therefore, we define ⊕ as symmetric differ-
ence (i.e., △) instead of set union, since any powerset is an abelian group under symmetric
difference [91] with each element acting as its own inverse. This choice of aggregation main-
tains identical semantics as the Subgraph Matching application presented in Section 2.2.1,
since any two subgraph sets generated by a matching algorithm and subsequently aggre-
gated are disjoint, while symmetric difference and set union are equivalent when applied to
disjoint sets. The set of anomalous subgraphs computed in App(gi−1) is simply Si−1, and
App(gi△gi−1) computes the union of Si−1 \ Si and Si \ Si−1 since the two sets are disjoint
by definition, which is conveniently the symmetric difference of Si and Si−1. Therefore the

†An abelian group is a commutative monoid where every element has an inverse. If the subgraph set Si

has fewer subgraphs than Si−1, then the change in aggregation value can only be computed by removing the
contribution of some subgraphs, necessitating inverses.

99

symmetric difference of App(gi−1) and App(gi△gi−1) is

App(gi−1) ⊕ App(gi△gi−1) = Si−1△(Si−1△Si)

= (Si−1△Si−1)△Si

= ∅△Si

= Si = App(gi).

Hence, anomaly detection has incremental application semantics.

Modeling System Execution. The system consumes a stream of tasks as input and
produces a stream of records as output. Formally, applications operate on global states
S = {g0, g1, . . . }, possible output records drawn from the aggregation value set R (e.g., all
possible sets of subgraphs in anomaly detection) and tasks drawn from a set T = N × N
representing potential edges (referred to by pairs of integer vertex ids) to be modified.

Tasks are processed using a pair of functions U and A, assuming a base state g0. For a
graph gi ∈ S and e ∈ T , U(gi, e) returns a new global state gj ∈ S obtained by adding edge
e to gi if it did not already exist, or removing e from gi if it already existed. On the other
hand, A(gi, e) executes App(gi△gi−1) and returns a sequence of records R = [r0, r1, ...] such
that ∀ri∈R ri ∈ R.

By appending an opcode to each task describing whether to execute U , A, or both, this
model captures common use cases such as: (i) event-driven analytics where computation
occurs in response to an update (i.e., tasks call for both a state update U and a computation
A); (ii) time-based analytics where computation and updates are decoupled (i.e., some tasks
call only U and appear whenever updates arrive, others call only A and appear periodically
to compute analytics logic); (iii) batch processing where the state is static (i.e., tasks never
call U); as well as (iv) classic state management applications (i.e., tasks never call A).

7.3.2 Output Failure Model

A faulty worker can impact the output generated by graph mining applications in various
ways. We categorize the impact of arbitrary faults as three types of output failures.

[Mismatch] An output record r corresponding to task t is a mismatch if it does not satisfy
the problem statement of t (i.e., r ̸∈ R or r ̸∈ A(s, t)). A faulty process in WP can
invalidate downstream computations by generating correct records for the wrong task, or
simply random records.

[Duplication] A faulty process in WP can perform a replay attack by outputting a record
r multiple times. An output record r corresponding to task t is a duplication if it has been
output previously in the result stream for t. Duplication can skew the output distribution
and hence break applications.

100

[Omission] A faulty process in WP can omit portions of the output (i.e., produce a
strict subset of A(s, t)). For example, a malicious process can hide suspicious records from
downstream analysis in a cybersecurity application.

The output failure model is complete with respect to Byzantine failures from the per-
spective of application output: if a certain sequence of records is expected, incorrect results
can only arise due to mismatch, duplication, or omission.

Lemma 7.3.1. All invalid records produced by an executor correspond to an output failure.

Proof. We proceed by contradiction. If an executor neglects to produce any records, it will
be classified as Omission. So suppose that an executor produces an invalid record r which
does not qualify as an output failure. To avoid Mismatch, r ∈ R and r ∈ A(st, t), for
some valid task t ∈ T and corresponding state st ∈ S. But then either r repeats in A(st, t)
(classified as Duplication), or r is valid since it follows all application semantics.

Lemma 7.3.2. Correct processes executing A do not generate output failures. Faithfully
executing A with correct tasks does not generate output failures.

Proof. Given a valid task t ∈ T and corresponding state st ∈ S, A(st, t) does not result in
an output failure by definition. Therefore the only way for a correct process to produce an
output failure is if A is executed with an invalid task t ̸∈ T or a state s such that s ̸∈ S
or s does not correspond to t. But this is impossible by Lemma 7.5.1, which proves that
correct processes share the same view of the global application state, corresponding to a
consistently ordered sequence of valid tasks. Therefore, no correct process will observe an
incorrect state or invalid task while executing A.

7.3.3 Properties for Verification

An incremental graph mining application is verifiable if it satisfies the following four prop-
erties:

[Task-Validity] For an arbitrary object t, it is possible to determine whether t ∈ T (i.e.,
whether A(s, t) is defined for arbitrary s ∈ S).

[Task-Scope] For an arbitrary record r, it is possible to determine whether r ∈ R (i.e.,
whether A can produce r).

[Task-Ordered] For every t ∈ T and g ∈ S, A(g, t) is totally ordered.

[Task-Bounded] For every task t ∈ T and g ∈ S, A(g, t) is finite.

The Task-Validity property prevents mismatch failures where Byzantine input pro-
cesses submit invalid tasks to be executed. A worker executing a task it was not assigned
implies either mismatch (i.e., no input process generated the task) or duplication (i.e.,

101

a different worker was assigned the task). The Task-Scope property distinguishes valid
and invalid records, so that mismatch failures involving incorrect or nonsensical records
can be identified. The Task-Ordered property represents the process-local program order
of the executing worker. A worker executing a task in a Task-Ordered application pro-
duces records in a specific order, and hence out-of-order output would imply duplication
or mismatch. Finally, the Task-Bounded property requires that applications guarantee
termination. Without this property, it is impossible to detect omission because observed
output from a worker process cannot necessarily be compared with the expected output of
A (i.e., they can both be infinite), which makes it impossible to identify whether a record
is missing.

Example 7.3.2 (Anomaly Detection). The anomaly detection application satisfies all of
the properties above.

[Task-Scope] It is possible to determine whether a record r is truly an anomalous subgraph
by ensuring all the edges in r exist in the graph and there exists a graph isomorphism
between r and the anomaly pattern.

[Task-Ordered] Any deterministic subgraph matching algorithm implicitly defines an or-
dering on its output based on program order (e.g., since the algorithm can be viewed as
a series of nested loops) and the layout of data graph edges in memory. Hence, there is a
total ordering on the set of subgraphs produced by A(g, t).

[Task-Bounded] A finite graph has a finite subgraph set, so A(g, t) can only produce
finitely many anomalous subgraphs.

While many incremental graph mining applications satisfy these properties, even those
that do not can be executed in OsirisBFT by decomposing the application into separate
subgraph generation and aggregation steps. As Example 7.3.2 shows, incrementally listing
subgraphs is verifiable. Therefore, the results of non-verifiable incremental graph mining
applications can be checked by verifying the subgraphs provided as input to the aggrega-
tion operator, and then offloading aggregation to the replicated verifiers or to downstream
processes (as in Tesseract [34]). In this fashion, aggregation computations are performed by
trusted or fault tolerant processes, while subgraph generation is verified.

7.3.4 Output Verification Model

Depending on the nature of the failures, they can be detected by: (a) employing generic
protocols in the underlying system; or, (b) verifying output records against application
semantics. Generic verification will be discussed in Section 7.4.2. Here we enable application-
specific verification.

102

Algorithm 4 API for verification operators.
bool isValid (Record r, Task t);
bool happensBefore (Record a, Record b);
int outputSize (Task t);

Verification Operators. We model application-specific verification operators that analyze
output records. Verifiable applications implement these operators, which are invoked by
verifiers (explained later in Section 7.4.2).

Algorithm 4 shows the three verification operators. isValid() checks whether a record
r is valid (i.e., r ∈ R) and is generated by the given task t. happensBefore() captures
the process-local program order of the executing worker by checking whether a record a

is ordered before record b. Finally, outputSize() returns the number of output records
for a task t. The verification operators are also complete, i.e., they combine to detect all
types of output failures (see proof in Section 7.5.1). Mismatch is detected by isValid()
and outputSize() that together ensure the output records are the ones expected from the
tasks. Duplication is detected using happensBefore() and outputSize() that identify
repeated records arriving from the correct task. Omission is detected using outputSize().

Example 7.3.3 (Anomaly Detection). Algorithm 5 illustrates the verification operators for
anomaly detection, where the computation primarily involves pattern matching. isValid()
ensures that each subgraph record is indeed a subgraph of the network graph, matches the
pattern, and contains the updated link that resulted in the task to compute that record.
happensBefore() determines the order between two subgraph records based on their prefix-
ordering (prefix-ordering is guaranteed by most pattern matching systems like Peregrine
or GraphPi [192]). Finally, outputSize() simply returns the true number of subgraphs
using efficient and exact counting optimizations (e.g., inclusion-exclusion [192] or Subgraph
Morphing) which are orders of magnitude faster than matching each individual subgraph.

Algorithm 5 Verification operators for Anomaly Detection.
// Network is network graph. Pattern is pattern to match.
// PatternMatcher contains the matching logic.
bool isValid (Record r, Task t) {

return isSubgraph (Network , r) && isMatch (Pattern , r)
&& r.links (). contains (link(t));

}
bool happensBefore (Record a, Record b) {

for(int i=0; i<a. length (); ++i) {
if(a[i] < b[i]) return true;
if(a[i] > b[i]) return false;
// if(a[i] == b[i]) continue ;

}
return false;

}
int outputSize (Task t) {

PatternMatcher .count(Network , Pattern , t);
}

103

7.3.5 Verifiability Beyond Graph Mining

The output failure model, verifiability properties, and verification operators can be ap-
plied to the broader class of task-parallel applications that encompasses incremental graph
mining.
Task-Parallel Applications. Task-parallel applications also consume a stream of tasks
as input and produce a stream of records as output. Instead of graphs, the set S contains
arbitrary application-specific global states, and a task t ∈ T consists of application-defined
data that will be passed as input to U/A. Task-parallel applications generate records drawn
from a set R without any particular algebraic structure. Similar to the incremental graph
mining case, U(s, t) updates a global state s ∈ S based on task t ∈ T and returns a new
state; and A(s, t) executes an application-specific computation on a global state s ∈ S and
task t ∈ T and returns a sequence of records R = [r0, r1, ...] such that ∀ri∈R ri ∈ R.
Generalizing Verifiability. Lemma 7.3.1 and Lemma 7.3.2 apply naturally to task-
parallel applications, therefore the output failure model remains complete with respect to
task-parallel applications, and any task-parallel application that implements the verification
operators can be executed safely and maintained live by OsirisBFT.

Task-parallel applications include incremental graph mining applications like anomaly
detection, but can also model a variety of other use cases like optimization (e.g., motion
planning) or cluster analysis (e.g., video analysis).

Example 7.3.4 (Motion Planning). The motion planning application solves NP-complete
Mixed Integer Programs (MIP) to determine routes for e.g., airplanes [166] and robots [187],
where output failures can lead to human harm. This is a batch-processing workload with no
underlying state (i.e., U is never called); tasks are MIP instances and A invokes a solver,
returning a single record containing a solution with a proof of optimality, or a proof showing
the MIP instance is infeasible (i.e., impossible to optimize). Then the verification operators
are straightforward: isValid() invokes the solver to verify whichever proof is present in
the record, while happensBefore and outputSize are trivial since each task generates a
single record.

Example 7.3.5 (Video Analysis). Here, S consists of frames in a video feed, and tasks are
occasionally submitted to the system to compute pixel clusters useful for image segmenta-
tion and motion detection [22, 227, 38]. When applied to e.g., security cameras, Byzantine
fault tolerance is desirable. A computes a k-centroids clustering [113] in response to occa-
sional tasks consisting of an integer k, returning locally-optimal centroids in the given video
frame. The clustering is valid if running an additional iteration of the k-centroids algorithm
shows negligible change in the centroids (i.e., the original execution had converged to an
optimum). The happensBefore and outputSize verification operators are trivial since each
task generates k distinct numerical records.

104

The discussion in the rest of this chapter applies to any verifiable task-parallel appli-
cation. This generalization demonstrates the power of application-awareness beyond graph
mining, as the insights from incremental graph mining semantics enable verification for a
wide array of applications.

7.4 Verifiable Processing with OsirisBFT

We present the verifiable processing architecture. We first summarize how tasks, records
and state are managed, and then describe the normal execution followed by verification
protocols and strategies for workload management.
State Management. Guaranteeing linearizability of computations on concurrently updat-
ing state requires efficient mechanisms for isolating state snapshots. Modern data analytics
systems [231, 40, 150] employ multiversioning in their data stores to enable concurrent com-
putations over well-defined deterministic snapshots. Specifically, both the state and updates
to the state are associated with a logical timestamp, and computations are restricted to spe-
cific states based on time intervals or windows. We replicate the timestamped state across
all WP to ensure consistency despite failures. Processes which incorrectly update state are
caught because they output incorrect results (executor), or ignored as most processes in
each sub-cluster operate correctly (verifier).
Replication & Communication. To retain efficiency during normal execution, we de-
velop optimistic protocols that optimize for low replication and fast communication. These
decisions lead to graceful executions similar to a system without fault tolerance, but create
a larger threat surface.
Task Batches & Record Chunks. To reduce communication overheads, tasks are streamed
in batches. Likewise, the sequence of records generated by a single computation task is split
into disjoint subsequences called chunks. Executors output a stream of chunks, allowing
verifiers to proceed in parallel instead of waiting for the entire sequence of records.

7.4.1 Normal Execution

Figure 7.4 shows the behavior of the system during graceful executions, divided across four
phases (marked [P1]-[P4]).

Task Flow: IP ↦→ V PCO ↦→ {V P, EP }

Algorithm 6 shows the protocols for this flow. The input processes send task batches to
V PCO [P1]. V PCO performs consensus to linearize the tasks, assigning monotonically in-
creasing ids to state updates, which serve as logical timestamps (line 4 in Algorithm 6).
Tasks with only computations are given the timestamp of the most recent state update.
Since ids are unique throughout the execution, faulty executors computing incorrect tasks
can be identified. In the same consensus, V PCO assigns computations to executors. The

105

퐼�/
푂�

 Receive f + 1
Record Copies

Submit
Tasks

푉��� Multicast Task
Assignments

Broadcast
State

Updates

Linearize
Tasks

퐸� Execute
Computation

Multicast
Records
to 푉��

Apply
State

Updates

푉��
Apply
State

Updates

Send
Records
to 푂�

Verify
Records

[P1] [P2] [P3] [P4]

Figure 7.4: Overview of verification-based processing.

tasks are then distributed among the cluster [P2]: computations are sent to assigned ex-
ecutors and state updates are broadcast to WP .
Coordination-Free Task Assignment. Each task has: (a) an assigned executor which
computes the task and generates records; and, (b) an assigned verifier sub-cluster to verify
those records. While task messages are smaller than the record chunks produced by those
tasks, communicating these two assignments separately creates a race condition; the execu-
tor may send record chunks to its assigned verifiers before the coordinator can inform them
of the assignment, causing them to falsely believe they are faulty.

To avoid this, tasks are assigned using a coordination-free scheme (lines 8-10 in Al-
gorithm 6). V PCO sends signed task assignment messages to both executors and verifiers
of the form ⟨t, E, i⟩, where t is the task to be executed by E ∈ EP and verified by V Pi.
The executor E receives f + 1 signed assignments for task t from different verifiers in the
coordinator before executing t. As record chunks are generated for t, the task assignment
messages (signed originally by verifiers in V PCO) are prepended to each chunk and sent
to V Pi. Likewise, verifiers in V Pi begin computing outputSize(t) upon receiving f + 1
assignment messages, in order to overlap verification and execution. Verifiers in V Pi each
ensure the assignment messages were signed by V PCO processes.

Output Flow: EP ↦→ V P ↦→ OP

As an executor computes a task, it sends each record chunk C to the assigned verifiers V Pi,
alongside a digest σ(C) [P3] using non-equivocating multicast (lines 25-28 in Algorithm 6).
The final chunk for a task is tagged to signal its completion.

Verifiers independently check that they received a valid digest for C and verify the
records in C are correct. Chunks are buffered until verification is complete before forwarding
to downstream processes. To reduce message sizes, the leader verifier sends ⟨C, σ(C)⟩ to the
process in OP , while every other verifier sends only σ(C). An output process accepts C if

106

Algorithm 6 Task Flow protocol.
1 // [P1] Coordinator receives task from input process
2 Void onRecvTask (Task t) {
3 if (! validTask (t)) return ; // t ̸∈ T
4 t. timestamp = consensus (t, getTimestamp ())// Linearize
5 // [P2] Broadcast state updates and assign computations
6 if (hasStateUpdate (t)) broadcast (t);
7 if (hasComputation (t)) {
8 <e, vpi > = getNextExecutorAndVP ();
9 send(e, <t, e, vpi >);

10 multicast (vpi , <t, e, vpi >);
11 startReassignmentTimeout (t);
12 }
13 }
14 // [P2] All other workers receive f+1 copies from V PCO

15 Void onRecvStateUpdate (Task t) { applyStateUpdate (t); }
16 //[P2] Verifier in V Pi receives f+1 copies from V PCO

17 Void onRecvAssignment (TaskAssignment <t, e, vpi >) {
18 if (! validAssignment (<t,e,vpi >) || ! hasComputation (t)) return ;
19 numRecords [t] = outputSize (t);
20 }
21 // [P2] Executor receives f+1 copies from V PCO

22 Void onRecvAssignment (TaskAssignment <t, e, vpi >) {
23 if (! validAssignment (<t,e,vpi >) || ! hasComputation (t)) return ;
24 // [P3] Send output to assigned verifiers
25 for (chunk in compute (t)) {
26 multicast (vpi , chunk);
27 nonEquivocatingMulticast (vpi , σ(chunk));
28 }
29 }

it receives f + 1 matching digests (including the one that accompanied C) from the same
verifier sub-cluster [P4].

7.4.2 Detecting Failures

Failures manifest where messages flow between fault tolerant verifiers and processes without
fault tolerance.

Application-Specific Failures

Algorithm 6 and Algorithm 7 show the verification protocols run by the verifiers in the Task
Flow and Output Flow, respectively.

Task Verification. mismatch caused by Byzantine IP in [P1] is handled by validating
input tasks before distributing them (isValid() on line 3 in Algorithm 6). Byzantine
executors can also cause mismatch failures in [P3] by sending chunks that correspond to
invalid tasks. Verifiers check that the task corresponding to every chunk has been assigned
to that executor and verifier sub-cluster (line 35 in Algorithm 7).

Record Chunk Verification. Records in every chunk are verified against mismatch and
duplication (lines 56-58 in Algorithm 7). Each record is checked for validity and whether
it originates from the correct task. Finally, the records are verified to be in sorted order by
applying happensBefore() to every adjacent pair of records.

107

Algorithm 7 Verifier Output Flow protocol.
30 // [P3] Verifier receives from executor
31 Void onRecvRecords (RecordMessage msg , String digest) {
32 TaskAssignment <t, e, vpi > = msg. getAssignment ();
33 Executor sender = msg. getSender ();
34 RecordList chunk = msg. getChunk ();
35 if (! validAssignment (<t, e, vpi >, sender)
36 || digest != computeDigest (chunk)
37 || ! verify (chunk , t, e)) {
38 markByzantineExecutor (sender);
39 allChunks [t]. clear ();
40 reassignAllTasks (sender);
41 } else if (chunk. taskFinished ()) {
42 cancelReassignmentTimeout (t);
43 sendDownStream (t, allChunks [t]. append (chunk));
44 } else {
45 resetReassignmentTimeout (t);
46 seenRecords [t] += chunk.size ();
47 allChunks [t]. append (chunk);
48 }
49 }
50 Bool verify (RecordList chunk , Task t, Executor e) {
51 // ensure t is ongoing and chunks are sorted
52 RecordList prevChunk = allChunks [t][-1];
53 if (prevChunk != null && (prevChunk . taskFinished ()
54 || ! happensBefore (prevChunk [-1], chunk [0])))
55 return false;
56 for (r in chunk) // ensure all chunks are valid
57 if (! isValid (r, t) || ! happensBefore (r, next(r)))
58 return false;
59 if (chunk. taskFinished ()) // ensure nothing is missing
60 if (seenRecords [t] + chunk.size () != numRecords [t])
61 return false;
62 return true;
63 }

Inter-Chunk Ordering. A Byzantine executor can attempt to hide duplication across
chunk boundaries, for example by sending a correct chunk twice. Verifiers protect against
this by comparing the last record in the previous chunk with the first record of the newly
received chunk, using the happensBefore() operator (lines 52-55 in Algorithm 7).

Missing Records. Finally, omission is detected by comparing the number of records sent
by an executor with the true number of records corresponding to the task when its final
chunk is received. The true count is available from outputSize() which runs asynchronously
while the executor produces records (line 19 in Algorithm 6).

Generic Protocol Failures

Generic failures range from impersonating processes to sophisticated attacks by different
Byzantine processes cooperating across multiple phases in order to prevent output and
compromise liveness.

Speculative Task Reassignment. Byzantine executors can cause omission faults and
compromise liveness by responding to most messages but neglecting to send a final chunk,
making them indistinguishable from a correct executor working on a difficult task. We
address this issue using a speculative reassignment scheme. In the case where the final
chunk is not marked or no output is received at all, when sufficient time passes after ∆,

108

the task times out (line 11 in Algorithm 6) and V PCO assigns the task to another executor.
Verifiers accept results from whichever executor finishes first. To avoid tying up all of EP on
one large task, the timeout duration for a given task is increased using exponential backoff.

Faulty Verifiers & Output Processes. A faulty verifier can compromise liveness by
never forwarding chunks to OP when it serves as leader of its sub-cluster. If an output
process receives f + 1 digests σ(C) from V Pi but does not receive a matching chunk C in
some time after ∆ has passed, it multicasts messages to V Pi to report a negligent leader.
When verifiers receive a negligent leader report, they initiate an election for a new leader,
and the new leader sends C instead.

However, a negligent leader report is not sufficient to conclude a verifier is faulty due to
the possibility of faulty output processes. Since there can only be f failures in V Pi, verifiers
track which leaders have been reported and assume an output process is Byzantine if it
reports f + 1 different leaders in the same sub-cluster. Finally, to avoid spurious reports
due to innocent network delays in communicating chunks, correct output processes apply
exponential backoff to their timeout duration after each negligent leader report.

Limited Equivocation. Equivocation occurs if a faulty process sends different messages
to different verifiers in a sub-cluster when it was expected to send identical messages. This
is expected in three situations: (1) In [P1] when an input process sends tasks to V PCO; (2)
In [P3] when an executor sends record chunks to assigned verifiers of a task; and, (3) In
[P4] when an output process sends negligent leader reports to all verifiers in the sub-cluster
that sent chunk digests.

In [P1], equivocation by an input process does not affect the system because V PCO

performs a Byzantine agreement protocol to linearize tasks, and conflicting task messages
will simply not be agreed upon. Similarly in [P4], equivocation by an output process has
no effect since f + 1 verifiers must initiate a leader election.

Finally, equivocation in [P3] is avoided by requiring executors to send chunk digests
using non-equivocating multicast, and having correct output processes that receive at least
one but fewer than f +1 digests σ(C) send a report containing σ(C) to the verifiers, similar
to negligent leader reports. Upon receiving the report, correct verifiers which have chunk
C broadcast it to the rest of the sub-cluster. The verifier that had not previously received
C but had received σ(C) now processes C as if it were sent from the original executor,
eventually forwarding a digest to the output process.

7.4.3 Dynamic Role-Switching

The task execution workload and the verification workload can remain incongruous across
various scenarios, impacting processing throughput. For example, tasks producing few re-
sults can leave verifiers idle despite executors being busy. Moreover, executors failing and
leaving the system can drop processing throughput until new executors join the cluster.

109

To maintain throughput in such situations, verifiers can switch roles. When verifier
resource utilization is low and there are many outstanding computation tasks, V PCO assigns
tasks to verifiers from an underutilized sub-cluster V Pi as if they were executors, and their
output is routed through another sub-cluster V Pj . Verifiers in V Pi finish their verification
work and then execute assigned tasks. In the meantime, V PCO avoids assigning V Pi as
verifiers of tasks.

7.5 Safety and Liveness

This section proves correctness guarantees of OsirisBFT.

7.5.1 Safety

OsirisBFT satisfies safety; every correct output process observes records corresponding to
a legal sequential execution of correct tasks submitted by input processes.

Lemma 7.5.1. The Task Flow results in a globally consistent ordering of tasks and task
assignments to executors.

Proof. In [P1], input processes act as clients to V PCO in a Byzantine agreement protocol
(correct by [6]), hence the tasks are safely linearized and correct verifiers agree on which
executor is assigned the task in [P2]. A correct executor only accepts task assignments
accompanied by f + 1 signatures, hence it can never be fooled into performing incorrect
tasks. Correct executors and verifiers have a consistent view of task ordering and assign-
ment, because network messages cannot be reordered and reassignment does not occur until
after ∆ has passed, so initial task assignment messages are received strictly before reassign-
ment messages. Furthermore, correct processes in WP have a consistent view of the state.
Monotonic timestamps mean that if a correct process receives f + 1 copies of a task with
timestamp k before receiving sufficient copies of a task with timestamp k − 1, the process
simply waits to receive tasks in order before executing. A correct process receiving f +1 cor-
rectly timestamped task assignments before the corresponding state update simply applies
the state update before performing the computation.

Lemma 7.5.2. Let t1, t2, . . . be the global (linearized) ordering of tasks submitted by IP ,
where ∀i, ti ∈ T . Let st ∈ S be the state obtained by applying all state updates from tasks
t1, . . . , t to the initial application state in order.

Correct verifiers send OP a sequence of records R corresponding to a task t if and only
if R = A(st, t).

Proof. By Lemma 7.5.1, all correct processes have access to st during execution of t. Write
R as a concatenation of k chunks, R = R1|R2| . . . |Rk, with chunk Ri consisting of l records

110

ri1| . . . |ril. By Algorithm 7, verifiers forward R to OP whenever the following hold:

k⋀︂
i=1

l⋀︂
j=1

isValid(rij) (7.1)

k⋀︂
i=1

l−1⋀︂
j=1

happensBefore(rij , ri(j+1)) (7.2)

k−1⋀︂
i=1

happensBefore(ril, r(i+1)1) (7.3)

k∑︂
i

|Ri| = outputSize(t) (7.4)

By (1), for all r ∈ R, r ∈ A(st, t). Hence we can write {r : r ∈ R} ⊆ {r : r ∈ A(st, t)}.
By (2) and (3), R is totally ordered according to ≺, so every element of R is unique and
we can write |{r : r ∈ R}| = |R|. Finally, by (4), |R| = |A(st, t)|, and we get {r : r ∈
R} = {r ∈ A(st, t)}. Since both R and A(st, t) are totally ordered according to ≺, we have
R = A(st, t).

Corollary 7.5.1. Correct output processes only observe correct records.

Proof. We prove this by contradiction. Suppose a correct output process O observes an
incorrect sequence of records. As every sequence is made up of chunks, O must observe an
incorrect chunk Ri.

To accept Ri, O receives Ri and f digests σ(Ri) from f + 1 verifiers in the same sub-
cluster. This implies either a correct verifier forwarded an incorrect chunk, contradicting
Lemma 7.5.2, or there are more than f failures in the same sub-cluster.

Theorem 7.5.3. Every correct output process observes records corresponding to a legal
sequential execution of tasks submitted by correct input processes.

Proof. By Corollary 7.5.1, there is a sequence of tasks T with corresponding states S such
that correct output processes only receive records corresponding to A(st, t) for t ∈ T .
By Lemma 7.5.1, all correct tasks are consistently ordered and successfully distributed to
executors. Correct verifiers reject records corresponding to unassigned tasks and hence T

contains only correct tasks submitted by an input process.
Furthermore, correct verifiers have a consistent view of the ordering of tasks when veri-

fying A(st, t). Therefore, ∀t ∈ T , A(st, t) follows a legal sequential execution of T .

7.5.2 Liveness

Reliable links alongside partial synchrony guarantee that sent messages are always delivered
without reordering. This constrains potential liveness issues to Byzantine behavior from

111

processes, namely full or partial unresponsiveness leading to omission failures. We begin
by proving that such failures cannot occur.

Lemma 7.5.4. If there is a non-faulty executor in EP , every correct task is executed.

Proof. Let t be a correct task and suppose for contradiction that t is never executed. By
Lemma 7.5.1, t is correctly distributed to an executor E. If E is correct it will execute t, so
E must be faulty.

But then f +1 correct verifiers in V PCO will eventually reassign t to a different executor,
succeeding once again due to Lemma 7.5.1. If any other executor is correct, t will be executed
after enough reassignments. Hence, t would remain unexecuted only when V PCO cannot
find a correct executor to reassign t. This means all executors must be faulty, which is a
contradiction.

Lemma 7.5.4 relies on a non-faulty executor in EP . Without this assumption, it is
impossible to tell whether all executors are faulty once t has been assigned to every executor
because the length of a task is not known a priori. To guarantee liveness in this worst case,
after a final timeout V PCO can always reassign t to a verifier sub-cluster, where at least
f +1 correct processes execute it and skip to [P4] in the Output Flow. In practice, however,
executors can be assumed Byzantine after a sufficiently long timeout and failed over.

Using Lemma 7.5.4, Lemma 7.5.2, and our assumptions about the underlying network,
we can now prove liveness.

Theorem 7.5.5. All correct output processes receive output records for every correct task
submitted by input processes.

Proof. The underlying network is partially synchronous and messages are delivered reliably,
thus executors can successfully forward output records to f + 1 verifiers. Additionally by
Lemma 7.5.2, verifiers will successfully forward output records to the output processes.
Finally, by Lemma 7.5.4, every correct task is executed. Therefore, all output records will
be received by f + 1 verifiers whether they are generated by a correct executor or by the
verifiers themselves.

7.6 Evaluation

We seek to understand how OsirisBFT affects performance and fault tolerance in realistic
processing scenarios.

System Details. All experiments were conducted using a 40-node cluster with each node
containing 8 logical cores and 6GB RAM, implemented as Docker containers like in [160].
Nodes are distributed among a testbed of machines connected by a Mellanox 100Gbps
Infiniband network (0.075ms TCP ping latency), each with a 2-socket Intel Xeon Gold 6242R

112

Kauri Basil OsirisBFT ZFT RCP

1

4 8 16 32
n

1K

10K
U
pd

at
es

/s
ec

1
(a) State Updates.

1 2 4 8 16 32
n

25M

50M

75M

100M

R
ec
or
ds

/s
ec

1
(b) Anomaly Detection.

1 2 4 8 16 32
n

10

30

50

70

1
(c) Motion Planning.

1 2 4 8 16 32
n

0

100

200

1
(d) Video Analysis.

Figure 7.5: Throughput scalability.
CPU. All experiments have a single node acting as both IP and OP , and the remaining
nodes allocated to WP .

OsirisBFT Implementation. OsirisBFT is implemented in approximately 3500 lines of
C++20 code. Regular communications use RDMA RC [118] via the ibverbs library, the
non-equivocating multicast implementation follows open-source code for Mu [7], and the
Fast & Robust algorithm [6] is used for consensus. Processes use one CPU core for network
operations, and the rest for cryptography and executing application tasks (executors) or
verifying results (verifiers).
Baselines. We compare OsirisBFT performance against a baseline with zero fault toler-
ance (ZFT), as well as a replicated computing processing architecture (RCP) based on the
RSM philosophy of replicating computation tasks. In ZFT, IP sends tasks to a coordinator
worker in WP , which distributes the tasks to other workers who execute A and simply for-
ward the results. BFT processing systems like Medusa [65] and others [198, 64, 169] target
narrow application models such as map-reduce or lack open-source code, and state-of-the-
art RSM systems like Kauri [160] focus on consensus and are inappropriate for heavyweight
computations. Therefore, we implement RCP using the same network and consensus al-
gorithms as OsirisBFT to capture the essence of the replicated processing design while
ensuring prior works are represented fairly. Every worker is replicated to create sub-clusters
of size 2f +1, with a designated coordinator sub-cluster WPCO that linearizes tasks from IP

and distributes them among the other sub-clusters to be executed. The worker sub-clusters
and OP only accept messages that are sent from f + 1 processes in a sub-cluster.

ZFT, RCP, and OsirisBFT all use a fully replicated data store since execution is
bottlenecked by computations and not state updates. To confirm this, we ran write-only
workloads on state-of-the-art BFT state management solutions Kauri [160] and Basil [200],
as well as OsirisBFT. Figure 7.5a shows the results for different cluster sizes. The data store
in OsirisBFT (and therefore the baselines) performs better as it does not incur overheads
from transactional safety (Basil) or hashing blocks (Kauri), while also leveraging RDMA.
Applications. We consider three applications to evaluate performance under diverse con-
ditions.

113

Anomaly Detection: Anomaly Detection computes anomalous subgraphs that emerge as
a result of graph updates [63]. We built the application on top of OsirisBFT by integrat-
ing components from state-of-the-art pattern matching systems [192, 17] with verification
operators implemented in only 100 lines of code.

Motion Planning: Motion Planning solves Mixed Integer Programs (MIP) to determine
routes for e.g., airplanes [166] and robots [187], where output failures can lead to human
harm. This is a batch-processing workload with no underlying state; tasks are drawn from
a set of 107 standard MIP instances [62]. Executors use the state-of-the-art SCIP suite [30]
to solve MIP instances. In OsirisBFT experiments, SCIP is configured to append a proof
of optimality or infeasibility to each record [56]. The verification operators use built-in
SCIP methods for validating the proof.

Video Analysis: This application operates on frequently updating video feed and peri-
odically computes pixel clusters useful for image segmentation and motion detection [22,
227, 38] for, e.g., security cameras, where Byzantine fault tolerance is desirable. It uses
clustering [113] where executors return the centroids of each cluster, and verifiers check
the optimality of centroids.

Methodology. Experiments are run 5 times and their results averaged to account for
variance. Throughput experiments measure average throughput (output records per second)
over 5 minutes, with an initial 30 second warm-up period. IP submits tasks to WP in
batches, and results are streamed continuously to OP . Except where specified otherwise,
experiments are run with f = 1 and 1MB record chunks. In Anomaly Detection, IP streams
1K tasks per second, and EP finds 6-cliques missing 2 edges in the Orkut graph [225],
common inputs in previous work [205, 192]. In Video Analysis, IP streams 1K state updates
per second and 5 computation tasks per second. In Motion Planning, IP streams 1K tasks
per second. Dynamic role-switching is enabled in most experiments, and executions begin
with |WP |/(2f + 1) verifier sub-clusters. OsirisBFT converges to a stable number of sub-
clusters during the warm-up period. Timeout values are calibrated empirically between 500
milliseconds and 5 seconds for each workload, necessary due to the complexity of the queries
(tasks can take hundreds of seconds).

7.6.1 Graceful Execution Performance

We measure how output record throughput scales in OsirisBFT by varying the size of
n = |WP | between 1 and 32 nodes for each of the three applications. Figure 7.5 shows
the results. OsirisBFT scales nearly as well as ZFT, with 1.2–4× lower throughput. The
performance gap between ZFT and OsirisBFT decreases as n grows, with ZFT having
4× higher throughput at n = 4 but only 1.4× at n = 32 (Video Analysis). The other
applications exhibit similar behaviour: in Motion Planning, ZFT initially has 2.3× higher

114

ZFT RCP OsirisBFT

1

1 2 4 8 16 32
n

50M

100M

150M

R
ec
or
ds

/s
ec

1
(a) Low CPU

& High Output.

1 2 4 8 1632
n

20M

40M

60M

1
(b) High CPU
& Low Output.

1 2 4 8 1632
n

50M

100M

1
(c) Medium CPU

& Output.

Figure 7.6: Throughput scalability across different Anomaly Detection workloads.

k=1 k=4 k=5 Dynamic

1

LH HL MM

1

0 40 80 120
Time

0

20M

40M

60M

R
ec
or
ds

/s
ec

k = 4 k = 3 k = 4

1
(a) Effect of role-switching. k is the number of

active verifier sub-clusters.

50 150 250

Task Latency (sec)

0

100M

200M

R
ec
or
ds

/s
ec 1K

10K 100K

1K 10K

100K

1
(b) Throughput-Latency for 100 to 100K tasks

submitted per second.

Figure 7.7: (a): effect of role-switching on Anomaly Detection workloads; (b):
throughput-latency curve as the number of tasks submitted per second increases.

throughput at n = 4 but 1.4× at n = 32, whereas the difference is 3.1× to 1.6× for Anomaly
Detection. This aligns with our theoretical analysis indicating OsirisBFT scales in O(n−f)
instead of O(n/f), as the relative cost of the O(f) overhead reduces as n grows.

Finally, OsirisBFT outperforms RCP in all workloads, achieving 1.9–2.3× higher through-
put at n = 32. The performance difference can be attributed to lower parallelism in RCP;
at n = 32 RCP has 10 parallel worker sub-clusters while OsirisBFT varies between 13 and
25 parallel executors based on how many verifiers switch roles.

OsirisBFT scales comparably to ZFT and scales better than RCP. OsirisBFT can
reduce the performance penalty of fault tolerance relative to ZFT by scaling out.

7.6.2 Bottleneck Analysis

We performed detailed experiments to study performance across workloads. Results for
Anomaly Detection are summarized below. By choosing appropriate queries from the liter-
ature, we emphasize stress on the CPU or the network, obtaining three workloads:

Medium CPU & Medium Output (MM): Listing instances of a dense size-6 pattern
in the Orkut graph [225], a fairly expensive query with fairly large output.

Low CPU & High Output (LH): Listing 3-hop paths in Amazon Products [110], a com-
putationally cheap query that creates massive result sets, to identify network bottlenecks.

115

High CPU & Low Output (HL): Listing 6-cliques in the Orkut graph [225], a compu-
tationally expensive query with relatively few results, to identify CPU bottlenecks.

Figure 7.6 shows the scalability on these workloads. As before, OsirisBFT scales nearly
as well as ZFT, achieving 1.4–3.7× lower throughput, with the gap closing as n grows.
Drilling down, we notice that MM and LH lead to worse scaling than the low output
workload HL. By profiling network and CPU usage of the workloads in ZFT and OsirisBFT
at n = 32, we discover that bandwidth usage on the link between OP and WP is similar
during the high output workloads. In OsirisBFT WP sends messages to OP at a rate of
2.2GB/s in LH, 2.0GB/s in MM, but 1.8GB/s in HL, and in ZFT the rates are 3.4GB/s
in both LH and MM, and 2.7GB/s in HL. Meanwhile average CPU usage of executors in
OsirisBFT and ZFT is 93–95% during HL but 79–84% in LH and MM.

Finally, comparing OsirisBFT to RCP shows that with different workloads, Osiris-
BFT achieves 1.5–4× higher throughput at n = 32, due to better parallelism. We observe
that in network-bound LH, RCP has 2.1×/1.5× lower throughput than ZFT/OsirisBFT,
since parallelism is least important, but 6.5×/4× lower than ZFT/OsirisBFT in CPU-
bound HL, where parallelism is most important. This follows our performance analysis in
Section 7.1, as OsirisBFT is CPU-efficient.
Locating the Network Bottleneck. Since output rates during LH and MM are nearly
identical and higher than HL, and CPU utilization is low, we confirm these workloads
are bottlenecked by record communication in both OsirisBFT and ZFT. Importantly,
this bottleneck only occurs at the link to OP , where records converge. The replicated
communication between executors and verifier sub-clusters is parallelized over multiple links,
and avoids this bottleneck. To further support this claim, we fix n = 32 and vary system load
by controlling the rate of task submission between 100 per second and 100K per second,
measuring task execution latency and output record throughput. Figure 7.7b shows the
results.

In LH and MM, heavy task loads severely impact latency as network bandwidth to
OP saturates. Increasing from 10K to 100K tasks per second leads to slim increases in
throughput compared to the increase in latency. However, in the CPU-bound HL workload
OsirisBFT continues to achieve higher throughput as load increases. Mean latency was
not affected from 10K to 100K tasks/sec since tasks in HL are expensive, and the cluster
has sufficient parallelism and bandwidth.

7.6.3 Dynamic Role-Switching

We investigate whether role-switching balances verification and execution by comparing the
throughput with executions where verifier sub-clusters are kept static (i.e., verifiers cannot
switch roles). Figure 7.7a shows the average throughput of the static executions, and plots
the throughput over 2 minutes of execution with dynamic role-switching. The best static
configuration is 4 sub-clusters, with 5 sub-clusters leaving verifiers idle and fewer than 4

116

Throughput (left) Bandwidth Use

1
1

2

3 G
B
/sec

30 45 60 75 90
Time

0

20M

40M

60M

R
ec
or
ds

/s
ec All executors fail

Roles switched

1
(a) Simultaneous failure of all executors in EP (i.e.,

not the ones role-switched from verifiers).

RCP OsirisBFT

1

1 2 3 4 5 6
f

0

20M

40M

R
ec
or
ds

/s
ec

1
(b) Throughput for varying

verifier fault tolerance level f .
Figure 7.8: Performance with Byzantine faults.

sub-clusters causing a verification bottleneck. The role-switching execution began with 5
sub-clusters but settled at 4 during its warm-up phase. Two other role-switches occur at
near 45 and 95 seconds to transition from 4 sub-clusters to 3 when the verification workload
dips due to a few consecutive batches of cheap tasks, then back to 4 sub-clusters when output
records become too many to handle. Overall, dynamic role-switching results in 11% higher
average throughput and 31% higher peak throughput than the best static configuration.

7.6.4 Performance Under Failures

Executor Failures. OsirisBFT theoretically tolerates the failure of all executor processes.
We investigate the behaviour of OsirisBFT when executors fail by injecting output failures
in every process from EP . Figure 7.8a shows the throughput and bandwidth observed at
OP during an execution of MM with f = 1, |V P | = 15 and |EP | = 16. At 45 seconds,
each executor corrupts the final record in the next chunk it outputs to cause a mismatch.
The failures are detected quickly, and throughput does not drop to 0, because 3 verifiers
had previously switched roles to act as executors. OsirisBFT automatically recovers to
half its previous throughput by 61 seconds, as 6 more verifiers switch roles to make up for
faulty executors. We repeated this experiment with other failure types and observed that
OsirisBFT always recovers to approximately half its previous throughput seconds after
fault detection.
Verifier Failures. Faulty verifiers mainly affect performance when sub-cluster leaders do
not forward chunks as expected and require OP to report them. We repeat the previous
experiment but instead of faulty executors, verifier sub-cluster leaders do not send chunks
to OP . We observe that throughput is only affected until a new leader is elected, and
OsirisBFT recovers to the same level since the executors are still correct.
Fault Scalability. We evaluate how OsirisBFT copes as more possibly faulty verifiers
must be tolerated. Figure 7.8b compares executions of MM by OsirisBFT and RCP with
n = 32 and varying fault tolerance levels f . OsirisBFT with role-switching ran with up
to 2 verifier sub-clusters and 9–20 executors. We observe OsirisBFT executing with f = 6
achieves 2.7× higher throughput than RCP with f = 2.

117

7.7 Conclusion

We presented OsirisBFT, a verification-based Byzantine fault tolerant processing archi-
tecture for distributed task-parallel applications that does not replicate computation tasks.
We formalized the application failures and developed generic verification operators to cap-
ture the required application semantics for verification. OsirisBFT incorporates efficient
verification protocols that capture Byzantine failures with little coordination. OsirisBFT
does not replicate computation tasks, hence delivering high processing throughput and scal-
ability, for the first time allowing the performance gap between BFT and unreliable systems
to close through horizontal scaling.

118

Chapter 8

Related Work

This thesis leverages insights from different domains and spans several literatures. Here,
previous work in these domains and literatures is organized thematically and discussed
critically.

8.1 General-Purpose Graph Mining Systems

Several general-purpose graph mining systems have been developed [205, 219, 111, 77, 146,
45]. Arabesque [205] is a distributed graph mining system that follows a filter-process model
developed on top of map-reduce. It proposed the “Think Like an Embedding” (TLE) pro-
cessing model. Pangolin [52], Kaleido [235], and Tesseract [34] all adopt this model, and
differentiate themselves through support for GPUs, disk spilling, and streaming graphs.
Fractal [77] extends TLE to the concept of fractoids, which expose parts of the user pro-
gram to the system; in conjunction with depth-first exploration, fractoids allow the system
to more intelligently plan its execution. G-Miner [45] is a task-oriented distributed graph
mining system that enables building custom graph mining use cases using a distributed task
queue. RStream [219] is a single machine out-of-core graph mining system that leverages
SSDs to store intermediate solutions. It uses relational algebra to express mining tasks as
table joins. SumPA [95] enhances batching in pattern-aware matching plans by combining
the input patterns into abstract patterns in order to eliminate redundancies during explo-
ration. AutoMine [146] compiles input patterns into exploration programs consisting of set
operation schedules. While AutoMine batches the schedules of multiple input patterns, the
schedules remain oblivious to the pattern substructures and symmetries, and hence end up
exploring redundant matches, as shown in Section 5.6.6.

As discussed in Section 5.1, none of these systems are fully pattern-aware the way
Peregrine [114] is: these systems perform unnecessary explorations and computations,
require large memory (or storage) capacity, and lack the ability to easily express mining
tasks at a high level. While Fractal uses symmetry breaking for pattern matching use case,
other applications like FSM and motif counting are not guided by symmetry breaking,

119

and hence they end up performing unnecessary explorations. Similarly, AutoMine also does
not employ symmetry breaking for any of the use cases, requiring users to filter duplicate
matches by individually examining every single match when enumerating patterns. Lack of
full pattern-awareness not only makes these systems slower, but also limits their applicability
to more complex mining use cases.

More recent works have adopted the pattern-aware philosophy of Peregrine [114], and
propose generic runtime techniques for improving graph mining performance based on input
patterns. These techniques can be classified as follows.

Exploration Strategies. Several works propose hybrid breadth-first and depth-first tech-
niques for graph mining in order to achieve high parallelism from breadth-first exploration
while limiting memory use [51, 47, 50, 208]. The high-level idea in all these works is to
chunk explorations: perform a fixed number of extensions in breadth-first manner to obtain
a chunk of partial matches, and traverse the chunks in depth-first manner. To enable this,
they analyze input patterns and the relationships between them in the same manner as
Peregrine [114] and Subgraph Morphing [116].

Contigra [44] develops strategies for graph mining runtimes to exploit containment con-
straints in graph mining applications. Making such constraints transparent to underlying
systems remains a challenging problem, as anti-vertex is currently the only declarative con-
struct for expressing constraints on subgraph neighbourhoods.

Using Disks. RStream [219] is a general-purpose disk-based graph mining system that
combines a relational data model with traditional graph processing techniques to allow
mining graphs on a single machine without exhausting memory. On the other hand, RStream
can easily exhaust disk space due to its breadth-first model since it stores matches in
uncompressed tables. Kaleido [235] seeks to remedy the disk exhaustion problem with a
compressed sparse match data structure that more succinctly stores matches.

Qiao et al [172] also identified this “output crisis”, but in the context of subgraph match-
ing, and proposed a novel vertex-cover-based compression scheme (VCBC) to store sets of
matches on disk in compact format, as well as a distributed algorithm to automatically
and efficiently join compressed match sets to form new ones. This approach makes it more
practical to store massive match sets, and offers the practical advantage that the match sets
can act as an index of the output space to make answering subsequent queries faster.

Hardware Acceleration. Pangolin [52] is the first programmable graph mining system
to leverage GPU hardware acceleration, but it is not pattern-aware. It adopts a breadth-
first exploration model which enables it to take advantage of SIMT parallelism. To broach
pattern-awareness, PBE [96] matches patterns using GPUs, operating on partitioned graphs
to stay within the limits of VRAM. G2Miner [50] is the latest GPU-based graph mining sys-

120

tem, and automatically generates CUDA code to efficiently match graph patterns on GPU.
It explicitly adopts pattern-aware optimizations such as data preprocessing and counting-
specific pruning.

There has also been work on novel hardware accelerators for graph mining, incor-
porating intelligent caches and graph mining-specific processing elements to boost effi-
ciency. FlexMiner [53] develops hardware support for existing techniques like connectivity
maps [51]. FINGERS [48] augments the large amounts of coarse-grain parallelism exploited
across processing elements with additional fine-grain parallelism within each processing el-
ement. These insights are carried to the streaming graph mining setting by PSMiner [170],
allowing for pattern-aware incremental graph mining. Other works focus on processing-in-
memory [39, 29] and near-memory [68, 202] graph mining. Shogun [222] studies how best
to schedule graph mining tasks on processing elements.

These works are all orthogonal to the issue of application-aware design. The systems
and frameworks developed in this thesis are compatible with hardware accelerators, novel
exploration styles, and compression schemes. Instead, this thesis focuses on understanding
the semantics of graph mining applications and exploiting them for performance and fault
tolerance.

8.2 Approximation

Approximation has been used extensively in specific graph mining tasks to achieve scalability
and efficiency, especially for counting matches. There is various work on algorithms for
approximate triangle counting [209, 174, 127, 194, 167], approximate motif counting [24,
93, 173, 196, 88, 139, 35], and approximate counts for arbitrary patterns [18, 195]. These
works typically either adapt existing sampling techniques into novel parallel algorithms [209,
88, 18, 194], or propose novel sampling methods optimized for different graph settings (e.g.,
uncertain graphs [139], streaming graphs [167], semistreaming graphs [127]).

There is also work on approximation for FSM [182, 12, 104, 237, 31]. Some works [182,
12, 104] employ Markov Chain Monte Carlo sampling schemes to directly sample subgraphs
from frequent patterns by first finding frequent single-vertex patterns and then exploiting
the anti-monotonicity of frequency to guide their sampling. Other works [237, 31] begin
by sampling a representative graph from the original data graph, then run an exact FSM
algorithm on the representative graph and extrapolate the results to the original graph. Ref-
erence [237] uses a similar idea to neighbourhood sampling, called random areas sampling,
where subgraphs are sampled from the neighbourhoods of seed vertices chosen uniformly
at random, and the representative graph is the union of these sampled subgraphs. Ref-
erence [31] ensures that the representative graph has the same degree distribution as the
original graph, by first grouping vertices with similar degrees (i.e., within a similarity range

121

given by a hyper-parameter δ) into buckets and proportionally sampling vertices from each
bucket. ScaleMine [2] is an exact FSM algorithm that uses an approximation phase to
compute bounds on the frequency of a pattern and thereby guide its exploration.

ASAP [111] generalizes neighbourhood sampling, a technique developed by Pavan et
al [167] to quickly compute approximate triangle counts in streaming graphs, to enable
unbiased approximation of counts for any pattern in a distributed graph setting. In neigh-
bourhood sampling the first edge is sampled at random, but subsequent edges are sampled
from the neighbours of a previously sampled edge. This increases the probability that an in-
dividual trial finds a match of the desired pattern, and thus reduces the number of trials for
reasonable accuracy. As [167] developed neighbourhood sampling in the context of stream-
ing graphs, ASAP also treats the graph as a stream of edges, and can support changing
graphs (i.e., the stream of edges can be infinite).

8.3 Graph Querying

Graph Query Languages. Graph query languages and their data models have been
extensively researched [21]. SPARQL [103] is one of the first graph query languages to
provide pattern matching alongside SQL constructs, and operates on sets of RDF triples. It
can support property graphs through [206], which translates SPARQL queries into Gremlin
queries. Cypher [86] is a query language on property graphs first developed as part of
Neo4j [161] that introduced “ASCII-art” syntax to specify path patterns. PGQL [212] offers
regular path expressions in the pattern matching syntax, and introduces novel operators to
construct new graphs as the result of a query. G-CORE [20] proposes a new graph query
language using similar syntax to Cypher and PGQL, but operating in the path property
graph data model, where paths are treated as a first-class entity with labels and properties.
GSQL [75] allows for computing aggregate values from the results of graph queries for
sophisticated graph analytics. GQL [74] is a recent effort to create a standard graph query
language for property graphs. It provides several novel constructs for query expression,
such as partial edge direction restrictions and edge predicates. Gremlin [178] is a functional
graph traversal language with a simple grammar meant to facilitate embedding within a
general-purpose programming language. Unlike the SQL-like syntax, Gremlin users define
queries as trees of functions through method-chaining in a host language.

These query languages expose syntax and operators for specifying edges, paths, and
constraints on query results, but cannot easily express neighbourhood constraints. The anti-
vertex construct provides a declarative method for specifying neighbourhood constraints.
Anti-vertex is a generic concept and can be incorporated in any modern query language in
a similar fashion to our proposed extensions to Cypher.
Querying Constructs. There has also been work on subgraph query models and pro-
gramming constructs for subgraph queries.

122

[85] allows expressing functional dependencies on graphs (GFD). GFDs cannot be used
to implement the anti-vertex construct, because they only constrain vertices within a match,
without access to the surrounding data graph. [83] proposes the concept of conditional graph
pattern (CGP) which enforces conditions on edges, but it cannot express absence of a vertex
like the anti-vertex construct.

Absence of entities has been studied in other contexts. Graph grammars [80] provide
rule-based mechanisms for generating and manipulating graphs, where the productions are
applied to a graph in order to obtain its derived graph when certain application conditions
are met. [97] studies negative application conditions that include non-existence of nodes and
edges in order to restrict how and where productions get applied. In relational algebra [61],
the antijoin operator is similar to semijoin, except its result contains tuples from one relation
that do not match on the common attribute from the other relation. Antijoins in SQL are
achieved using WHERE clause coupled with logical operators like NOT EXISTS, limited in
a similar manner as shown in Figure 4.2 and Figure 4.3.
Graph Query Engines. The backends to graph query languages are graph query en-
gines. Recent works include PGX.D [109, 180] using PGQL [212]; GraphFlow [120] using
Cypher [86]; and GAIA [171] using Gremlin [178]. These works consider backend systems
details regarding efficiently executing graph queries which have few results and are typically
not aggregated. This thesis instead develops new ways of expressing graph queries through
anti-edges and anti-vertices, and analyzes graph mining applications involving massive re-
sults and requiring aggregation.

8.4 Application-Specific Graph Mining

Purpose-Built Graph Mining Solutions. These works efficiently perform specific
graph mining tasks. ApproxG [147] is an efficient system for computing approximate graphlet
(motif) counts with accuracy guarantees. [9] uses combinatorial arguments to obtain counts
for size 3 and 4 motifs after counting smaller motifs. [71] efficiently lists k-cliques in sparse
graphs and [27] is aimed at k-plexes which are clique-like structures. GraMi [82] leverages
anti-monotonicity for FSM on a single machine while ScaleMine [2] is a distributed system
for FSM that uses efficiently computable approximate stats to inform its graph exploration.
[203] is also a distributed system focusing on FSM. [233, 197] are recent works aimed at
analyzing small graphs whose edges have large attribute sets.

Several systems aim to perform efficient pattern matching. OPT [124] is a fast single-
machine out-of-core triangle-counting system whose techniques are generalized by Dual-
Sim [123] to match arbitrary patterns. [194] proposes several provably cache-friendly paral-
lel triangle-counting algorithms which provide order-of-magnitude speedups over previous
algorithms. DistTC [107] presents a distributed triangle-counting technique that leverages a
novel graph partitioning strategy to count triangles with minimal communication overhead.

123

[134] is a distributed map-reduce based pattern matching system that first finds small
patterns and joins them into large ones. QFrag [190] is another map-reduce based dis-
tributed pattern matching system that focuses on searching graphs for large patterns using
the TurboISO [102] algorithm. PruneJuice [176] is a distributed pattern matching system
that focuses on pruning data graph vertices that cannot contribute to a match. [101] is a
scalable subgraph isomorphism algorithm while TurboFlux [125] performs pattern match-
ing on dynamically changing data graphs. [154] presents a pattern matching plan opti-
mizer incorporated in Graphflow [120] that uses both binary and multi-way joins. [180] is a
resource-aware distributed graph querying system for property graphs.
Subgraph Matching. There is a broad literature concerned with matching subgraphs
in large graphs according to isomorphism semantics, spread especially by the databases
community [102, 125, 123, 133, 134, 175, 172, 33, 101, 32, 17, 154, 226], but also in
systems [190, 144, 145], and high-performance computing [192, 176]. Algorithms devel-
oped in the databases community are evaluated comprehensively in a recent study [199].
Dryadic [144] leverages an intermediate computation tree structure to generate efficient code
for distributed pattern matching. GraphPi [192] uses a performance model to select efficient
matching orders for subgraph matching. These works can be incorporated in application-
aware graph mining systems since generating the subgraph set S is an expensive step in
most applications, but they are not application-aware because they do not consider the wide
array of possible graph mining aggregations.
Counting Subgraphs. A myriad of research has been conducted on algorithms for counting
motifs [93, 9, 141, 108, 151, 152, 234, 168, 173, 147]. [9] uses combinatorial identities for
counting size 3 and 4 motifs. RAGE [141] provides a method for computing edge-induced
size-4 motifs, and for converting the results to those for vertex-induced motifs. [108] uses
automorphism groups of pattern vertices to compute counts for motifs with 2-5 vertices,
while [151, 152, 234] optimize orbit-local counting using equations for arbitrary pattern
sizes. [168] computes counts for all size 5 motifs using global and local counts for smaller
patterns.

As discussed in Section 6.2.4, none of these works are applicable for general-purpose
graph mining systems since they focus (a) only on converting counts, (b) only for certain
specific patterns, and (c) only on certain specific way to convert counts. Hence for instance,
their combinatorial strategies (e.g., scalar möbius function in [234]) cannot be generalized
to arbitrary aggregations, and they cannot generate multiple alternatives, which is crucial.
In comparison, Subgraph Morphing [116] is general and captures system-level nuances
and application-level characteristics, making it practical for graph mining systems.
Frequent Subgraphs. Works like [82, 2, 3] develop solutions for mining frequent patterns,
however none of these are pattern-based and they instead view the FSM computation in
terms of arbitrary subgraphs of the data graph.

124

8.5 Byzantine Fault Tolerance

Byzantine fault tolerance is a well-studied research area. We summarize the proposed solu-
tions below.
Byzantine Fault Tolerant Data Processing. [198, 64, 65, 157, 169] enable Byzantine
fault tolerance in data processing systems. ClusterBFT [198] replicates data-flow nodes in
data-flow systems 2f + 1 times. [64] replicates mapper and reducer tasks in MapReduce so
that an answer is correct when a quorum of 2f +1 tasks achieve the same result. Medusa [65]
extends this fault tolerance to MapReduce clusters in multi-cloud environments, where
failures can affect entire data centres. [157] also replicates MapReduce tasks and chooses
results that occur most frequently. Finally, Greft [169] is a BFT graph processing system
that replicates vertex functions, relying on a trusted master process to detect if values differ.

These works rely on replication of core computation, limiting their scalability, while
OsirisBFT [115] enables BFT processing without replicating application tasks.
Byzantine Fault Tolerance Protocols. Research regarding BFT consensus spans decades,
with seminal works like PBFT [41] inspiring many works that improve usability, resiliency,
and performance [42, 177, 130, 129, 214, 60, 10, 25, 1, 66, 28, 228, 8]. [5] proposed the
message-and-memory model used by [6] to achieve BFT consensus with 2f + 1 replicas.
[228] divides workers into an agreement sub-cluster and execution sub-clusters; however,
both the sub-clusters replicate tasks.

More recently, the popularity of permissioned blockchains has caused a resurgence in
BFT research. HotStuff [229], Kauri [160], Fabric [19], Narwhal and Tusk [69], Damysus [73],
and others [70, 11, 126, 122] develop efficient consensus strategies using optimized commu-
nication and transaction scheduling techniques as well as trusted components.

There has also been ample work on Byzantine fault tolerance for databases, like [213,
106, 15, 16, 165, 200, 224] that focus on serializable concurrent execution of transactions,
and [159, 81, 87] that marry blockchain and database features.

All these works focus on consensus in the client-server model, where agreeing on an
ordering of client requests is the only consistency requirement. As such, they relate only
to the Task Flow of OsirisBFT [115], where tasks from IP are linearized. However, we
target task-parallel processing and focus on computation and not state management, and
our solution ensures the computation is not replicated.
Byzantine Fault Detection. PeerReview [99] and others [98, 92] propose failure detectors
for Byzantine faults. These are modules in each node which only eventually detect simple
deviations from a protocol, whereas a faulty executor can communicate correctly with other
nodes while outputting incorrect records. OsirisBFT [115] does not have such limitations
since all communication with downstream nodes occurs through verifiers which can detect
all output failures.

125

8.6 Graph Processing Systems

Several works enable processing static and dynamic graphs [140, 89, 162, 193, 143, 181, 90,
236, 216, 76, 131, 217, 218, 184, 109]. These systems typically compute values on vertices
and edges rather than analyzing substructures in graphs. They decompose computation at
vertex and edge level, which is not suitable for graph mining use cases.

[140, 89, 162, 193, 181, 90, 236, 216, 143, 223, 142, 215, 184, 109, 217] and others
primarily focus on graph processing problems that compute values on vertices and edges, as
opposed to graph mining problems that are concerned with subgraph structures. aDFS [208]
enhances the graph processing system PGX.D [109] with a hybrid depth-first/breadth-first
graph exploration strategy for pattern matching queries. On the other hand, techniques like
[132] develop custom transformations for specific subgraphs in the data graph in order to
speed up value propagation.

As explained in Chapter 2, graph processing workloads are fundamentally different
from graph mining. Graph processing applications iteratively perform matrix computations,
whereas graph mining aggregates subgraphs.

126

Chapter 9

Conclusion

This thesis investigated the use of application semantics in improving general-purpose graph
mining systems, as well as how such semantics can be expressed transparently. These ques-
tions were approached from the perspectives of a general-purpose programmable graph
mining system Peregrine, a system-agnostic framework Subgraph Morphing, as well
as a Byzantine fault tolerant distributed protocol OsirisBFT. Each perspective made the
case for application-aware design by advancing the current understanding of a different facet
of graph mining systems. Peregrine demonstrated the performance impact of employing
application-specific techniques more broadly, and provides a foundation for using input pat-
terns as a declarative query language to communicate application semantics to the system
without resorting to imperative and opaque callbacks. Subgraph Morphing studied how
application-awareness can be exploited without tightly coupling to low-level details of a
processing model, and provides techniques for generalizing theoretical application-specific
insights. Finally, OsirisBFT exploits a fundamental algorithmic fact about graph mining
applications to develop a novel distributed architecture for Byzantine fault tolerance that
enables scalability without sacrificing safety. These works represent the first push in the
graph mining systems literature towards explicitly leveraging the user application seman-
tics to develop graph mining systems, and inspiring extensive use of application-awareness
by the community, particularly to develop novel pattern-aware graph mining and pattern
matching solutions [47, 50, 46, 94, 44, 53, 202, 222, 48, 170, 39].

As the field matures, there are several paths forward for graph mining systems research.
Up to now, significant research has been dedicated to application-aware subgraph matching
in order to generate the subgraph set S for more complex applications, and this line of
research will no doubt continue as novel algorithms, techniques, and hardware capabilities
evolve. However as shown in Chapter 6, Peregrine and similar pattern-based systems
are seldom bottlenecked by subgraph matching when executing complex applications, in-
stead hitting fundamental scalability limits due to the number of subgraphs that filters and
aggregations must process. Yet outside of Subgraph Morphing and OsirisBFT, little
research has been done on leveraging application semantics beyond the backend, leaving

127

gaps in application-aware frontends, middle-ends, and high-level architecture designs. This
thesis has demonstrated that application semantics are a largely untapped resource, and
the impact of application-awareness will extend beyond pattern-aware subgraph matching.

By developing novel insights at different layers of the system, more ambitious work can
be done on comprehensive systems that understand and optimize graph mining applica-
tions end-to-end, from high-level specifications through to execution. The path toward such
a system requires several key developments. First, we need richer domain-specific languages
that can fully capture the intent of graph mining applications. The pattern-based abstrac-
tions developed in this thesis are just the beginning. Future systems will extend pattern
semantics to express an even broader range of structural constraints and neighborhood
properties, allowing users to directly specify what subgraphs they want rather than writing
complex filters and callbacks. The distinction between edge-induced and vertex-induced ex-
ploration, which this thesis unified through anti-edges, hints at how many other seemingly
fundamental implementation choices could be abstracted away through the right semantic
models.

Second, these declarative specifications must be coupled with configurable execution
strategies. Users should be able to easily express their requirements around fault toler-
ance, memory usage, and parallelism through high-level knobs, and the system would then
automatically select appropriate techniques that make intelligent tradeoffs based on the
application semantics. While this thesis presented options and techniques for making such
tradeoffs, e.g., when to use verification versus replication for fault tolerance, or when to
morph patterns for better performance, making a combination of runtime choices across
the system can lead to compelling novel insights.

Finally, and perhaps most importantly, the portion of applications that requires custom
user code should continue to shrink. As pattern semantics grow richer and systems better
understand common aggregations, what users express imperatively today through opaque
callbacks will increasingly move into the declarative specification of the subgraph set S

and composable aggregation operators. By replacing the user-defined functions and filters
that dominate current graph mining programs with higher-level specifications, future graph
mining systems can better optimize execution without additional burden on users.

This vision builds on the fundamental insight of this thesis: that understanding ap-
plication semantics enables better systems. The challenge ahead is to develop even richer
semantic models that can capture more of what users want to express, while maintaining
the performance benefits demonstrated by pattern-aware designs. Application-aware design
leads not only to faster graph mining, but also to greater scalability and fault tolerance for
task-parallel, and offer more declarative interfaces that abstract implementation details out
of user programs.

128

Bibliography

[1] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter,
and Jay J. Wylie. Fault-Scalable Byzantine Fault-Tolerant Services. In Proceedings of
the ACM Symposium on Operating Systems Principles, SOSP ’05, page 59–74, 2005.

[2] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis, Zuhair Khayyat, and Fuad
Jamour. ScaleMine: Scalable Parallel Frequent Subgraph Mining in a Single Large
Graph. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’16, pages 1–12, 2016.

[3] Ehab Abdelhamid, Mustafa Canim, Mohammad Sadoghi, Bishwaranjan Bhattachar-
jee, Yuan-Chi Chang, and Panos Kalnis. Incremental Frequent Subgraph Mining on
Large Evolving Graphs. In 34th IEEE International Conference on Data Engineering,
ICDE 2018, Paris, France, April 16-19, 2018, pages 1767–1768, 2018.

[4] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases: The
Logical Level. Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 1995.

[5] Marcos K. Aguilera, Naama Ben-David, Irina Calciu, Rachid Guerraoui, Erez Petrank,
and Sam Toueg. Passing Messages While Sharing Memory. In Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing, PODC ’18, page 51–60,
2018.

[6] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra Marathe, and
Igor Zablotchi. The Impact of RDMA on Agreement. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, PODC ’19, page 409–418, 2019.

[7] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J. Marathe,
Athanasios Xygkis, and Igor Zablotchi. Microsecond Consensus for Microsecond Ap-
plications. In 14th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI ’20, pages 599–616, November 2020.

[8] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Antoine Murat, Athana-
sios Xygkis, and Igor Zablotchi. UBFT: Microsecond-Scale BFT Using Disaggregated
Memory. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2, ASPLOS ’23,
page 862–877, 2023.

[9] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick G. Duffield. Efficient
Graphlet Counting for Large Networks. In 2015 IEEE International Conference on
Data Mining, ICDM 2015, pages 1–10, 2015.

129

[10] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe Mar-
tin, and Carl Porth. BAR Fault Tolerance for Cooperative Services. In Proceedings of
the ACM Symposium on Operating Systems Principles, SOSP ’05, page 45–58, 2005.

[11] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George
Danezis. Chainspace: A Sharded Smart Contracts Platform. In 25th Annual Net-
work and Distributed System Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018. The Internet Society, 2018.

[12] Mohammad Al Hasan and Mohammed J. Zaki. Output Space Sampling for Graph
Patterns. Proceedings of the VLDB Endowment, 2(1):730–741, August 2009.

[13] Roberto Alonso and Stephan Günnemann. Mining contrasting quasi-clique patterns.
CoRR, abs/1810.01836, 2018.

[14] Amazon, Inc. Amazon Neptune, 2022. Version 1.1.0.0.

[15] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. CAPER: A
Cross-Application Permissioned Blockchain. Proceedings of the VLDB Endowment,
12(11):1385–1398, July 2019.

[16] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. SharPer: Shard-
ing Permissioned Blockchains Over Network Clusters. In Proceedings of the 2021
International Conference on Management of Data, SIGMOD ’21, page 76–88, 2021.

[17] Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas Joglekar. Distributed
Evaluation of Subgraph Queries Using Worst-Case Optimal Low-Memory Dataflows.
Proceedings of the VLDB Endowment, 11(6):691–704, February 2018.

[18] Pranay Anchuri, Mohammed J. Zaki, Omer Barkol, Shahar Golan, and Moshe Shamy.
Approximate Graph Mining with Label Costs. In Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’13, page 518–526, 2013.

[19] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Chris-
tidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov
Manevich, Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari
Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić,
Sharon Weed Cocco, and Jason Yellick. Hyperledger Fabric: A Distributed Operat-
ing System for Permissioned Blockchains. In Proceedings of the Thirteenth EuroSys
Conference, EuroSys ’18, 2018.

[20] Renzo Angles, Marcelo Arenas, Pablo Barcelo, Peter Boncz, George Fletcher, Clau-
dio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan Sequeda,
Oskar van Rest, and Hannes Voigt. G-CORE: A Core for Future Graph Query Lan-
guages. In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD ’18, page 1421–1432, 2018.

[21] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and Do-
magoj Vrgoč. Foundations of Modern Query Languages for Graph Databases. ACM
Computing Surveys, 50(5), September 2017.

130

[22] Borislav Antić, Dragan Letić, Dubravko Ćulibrk, and Vladimir Crnojević. K-means
based segmentation for real-time zenithal people counting. In 2009 16th IEEE Inter-
national Conference on Image Processing, ICIP ’09, pages 2565–2568, 2009.

[23] Apache Software Foundation. Giraph, 2011. Accessed: 2024-05-15.

[24] V. Arvind and Venkatesh Raman. "approximation algorithms for some parameter-
ized counting problems". In Prosenjit Bose and Pat Morin, editors, Algorithms and
Computation, pages 453–464, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[25] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma. RBFT: Redundant
Byzantine Fault Tolerance. In 2013 IEEE 33rd International Conference on Dis-
tributed Computing Systems, ICDCS ’13, pages 297–306, 2013.

[26] Lowell W Beineke, Robin J Wilson, and Peter J Cameron, editors. Topics in Alge-
braic Graph Theory. Encyclopedia of mathematics and its applications. Cambridge
University Press, Cambridge, England, October 2004.

[27] Devora Berlowitz, Sara Cohen, and Benny Kimelfeld. Efficient enumeration of max-
imal k-plexes. In Proceedings of the ACM International Conference on Management
of Data (SIGMOD ’15), pages 431–444, 2015.

[28] Alysson Bessani, João Sousa, and Eduardo E.P. Alchieri. State Machine Replication
for the Masses with BFT-SMART. In 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN ’14, pages 355–362, 2014.

[29] Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata Ausavarung-
nirun, Jakub Beránek, Konstantinos Kanellopoulos, Kacper Janda, Zur Vonarburg-
Shmaria, Lukas Gianinazzi, Ioana Stefan, Juan Gómez Luna, Jakub Golinowski,
Marcin Copik, Lukas Kapp-Schwoerer, Salvatore Di Girolamo, Nils Blach, Marek
Konieczny, Onur Mutlu, and Torsten Hoefler. Sisa: Set-centric instruction set ar-
chitecture for graph mining on processing-in-memory systems. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’21, page
282–297, 2021.

[30] Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim
Donkiewicz, Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Am-
bros Gleixner, Leona Gottwald, Christoph Graczyk, Katrin Halbig, Alexander Hoen,
Christopher Hojny, Rolf van der Hulst, Thorsten Koch, Marco Lübbecke, Stephen J.
Maher, Frederic Matter, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Daniel
Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Boro
Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Wellner, Dieter
Weninger, and Jakob Witzig. The SCIP Optimization Suite 8.0. Technical report,
Optimization Online, December 2021.

[31] Vandana Bhatia and Rinkle Rani. Ap-FSM: A parallel algorithm for approximate
frequent subgraph mining using Pregel. Expert Systems with Applications, 106:217–
232, 2018.

[32] Bibek Bhattarai, Hang Liu, and H. Howie Huang. CECI: Compact Embedding Clus-
ter Index for Scalable Subgraph Matching. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD ’19, pages 1447–1462, 2019.

131

[33] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. Efficient Subgraph
Matching by Postponing Cartesian Products. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, pages 1199–1214, 2016.

[34] Laurent Bindschaedler, Jasmina Malicevic, Baptiste Lepers, Ashvin Goel, and Willy
Zwaenepoel. Tesseract: Distributed, General Graph Pattern Mining on Evolving
Graphs. In Proceedings of the Sixteenth European Conference on Computer Systems,
EuroSys ’21, pages 458–473, 2021.

[35] Ilaria Bordino, Debora Donato, Aristides Gionis, and Stefano Leonardi. Mining large
networks with subgraph counting. In 2008 Eighth IEEE International Conference on
Data Mining, ICDM ’08, pages 737–742, 2008.

[36] Gabriel Bracha and Sam Toueg. Asynchronous Consensus and Broadcast Protocols.
Journal of the ACM, 32(4):824–840, October 1985.

[37] Björn Bringmann and Siegfried Nijssen. What Is Frequent in a Single Graph? In
Advances in Knowledge Discovery and Data Mining, 12th Pacific-Asia Conference,
volume 5012 of Lecture Notes in Computer Science, pages 858–863, 2008.

[38] Butler, Darren and Bove Jr, V. Michael and Sridha, Sridharan. Real-Time Adaptive
Foreground/Background Segmentation. EURASIP Journal on Advances in Signal
Processing, 2005, August 2005.

[39] Shuangyu Cai, Boyu Tian, Huanchen Zhang, and Mingyu Gao. PimPam: Efficient
Graph Pattern Matching on Real Processing-in-Memory Hardware. Proceedings of
the ACM on Management of Data, 2(3), May 2024.

[40] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and
Kostas Tzoumas. Apache flink: Stream and batch processing in a single engine. The
Bulletin of the Technical Committee on Data Engineering, 38(4), 2015.

[41] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance. In 3rd Sym-
posium on Operating Systems Design and Implementation, OSDI ’99, New Orleans,
LA, February 1999.

[42] Miguel Castro and Barbara Liskov. Proactive Recovery in a Byzantine-Fault-Tolerant
System. In Proceedings of the 4th Conference on Symposium on Operating Systems
Design & Implementation - Volume 4, OSDI ’00, USA, 2000.

[43] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. Better bitmap per-
formance with roaring bitmaps. Software: Practice and Experience, 46(5):709–719,
2016.

[44] Joanna Che, Kasra Jamshidi, and Keval Vora. Contigra: Graph mining with contain-
ment constraints. In Proceedings of the Nineteenth European Conference on Computer
Systems, EuroSys ’24, page 50–65, 2024.

[45] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, and James Cheng. G-
Miner: An Efficient Task-Oriented Graph Mining System. In Proceedings of the 13th
EuroSys Conference, EuroSys ’18, pages 1–12, 2018.

132

[46] Jingji Chen and Xuehai Qian. Decomine: A compilation-based graph pattern mining
system with pattern decomposition. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, Volume 1, ASPLOS 2023, page 47–61, 2022.

[47] Jingji Chen and Xuehai Qian. Khuzdul: Efficient and scalable distributed graph
pattern mining engine. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 2,
ASPLOS 2023, page 413–426, 2023.

[48] Qihang Chen, Boyu Tian, and Mingyu Gao. FINGERS: exploiting fine-grained par-
allelism in graph mining accelerators. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’22, page 43–55, 2022.

[49] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. PowerLyra: Differentiated
Graph Computation and Partitioning on Skewed Graphs. In Proceedings of the Tenth
European Conference on Computer Systems, EuroSys ’15, 2015.

[50] Xuhao Chen and Arvind. Efficient and scalable graph pattern mining on GPUs. In
16th USENIX Symposium on Operating Systems Design and Implementation (OSDI
22), pages 857–877, Carlsbad, CA, July 2022. USENIX Association.

[51] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, Loc Hoang, and Keshav Pingali.
Sandslash: a two-level framework for efficient graph pattern mining. In Proceedings of
the 35th ACM International Conference on Supercomputing, ICS ’21, page 378–391,
2021.

[52] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali. Pangolin: An
Efficient and Flexible Graph Mining System on CPU and GPU. Proceedings of the
VLDB Endowment, 13(10):1190–1205, April 2020.

[53] Xuhao Chen, Tianhao Huang, Shuotao Xu, Thomas Bourgeat, Chanwoo Chung, and
Arvind Arvind. Flexminer: A pattern-aware accelerator for graph pattern mining. In
2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), pages 581–594, 2021.

[54] James Cheng, Yiping Ke, Ada Wai-Chee Fu, Jeffrey Xu Yu, and Linhong Zhu. Finding
Maximal Cliques in Massive Networks. ACM Transactions on Database Systems,
36(4), December 2011.

[55] Xu Cheng, C. Dale, and Jiangchuan Liu. Statistics and social network of youtube
videos. In Hans van den Berg and Gunnar Karlsson, editors, Quality of Service, 2008.
IWQoS 2008. 16th International Workshop on, pages 229–238. IEEE, June 2008.

[56] Kevin K. H. Cheung, Ambros Gleixner, and Daniel E. Steffy. Verifying Integer Pro-
gramming Results. In Integer Programming and Combinatorial Optimization, pages
148–160. Springer International Publishing, 2017.

[57] Alexandra Chouldechova. Fair Prediction with Disparate Impact: A Study of Bias in
Recidivism Prediction Instruments. Big Data, 5(2):153–163, June 2017.

133

[58] Wei-Ta Chu and Ming-Hung Tsai. Visual Pattern Discovery for Architecture Image
Classification and Product Image Search. In Proceedings of the 2nd ACM International
Conference on Multimedia Retrieval, ICMR ’12, pages 1–8, 2012.

[59] Allen Clement, Flavio Junqueira, Aniket Kate, and Rodrigo Rodrigues. On the (Lim-
ited) Power of Non-Equivocation. In Proceedings of the 2012 ACM Symposium on
Principles of Distributed Computing, PODC ’12, page 301–308, 2012.

[60] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and Mirco Marchetti.
Making Byzantine Fault Tolerant Systems Tolerate Byzantine Faults. In Proceedings
of the 6th USENIX Symposium on Networked Systems Design and Implementation,
NSDI ’09, page 153–168, USA, 2009.

[61] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communica-
tions of the ACM, 13(6):377–387, June 1970.

[62] William J. Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A Hybrid Branch-
and-Bound Approach for Exact Rational Mixed-Integer Programming. Mathematical
Programming Computation, 5(3):305–344, 2013.

[63] Corinna Cortes, Daryl Pregibon, and Chris Volinsky. Communities of Interest. In Pro-
ceedings of the 4th International Conference on Advances in Intelligent Data Analysis,
IDA ’01, page 105–114, Berlin, Heidelberg, 2001. Springer-Verlag.

[64] Pedro Costa, Marcelo Pasin, Alysson N. Bessani, and Miguel Correia. Byzantine Fault-
Tolerant MapReduce: Faults are Not Just Crashes. In 2011 IEEE Third International
Conference on Cloud Computing Technology and Science, pages 32–39, 2011.

[65] Pedro A. R. S. Costa, Xiao Bai, Fernando M. V. Ramos, and Miguel Correia. Medusa:
An Efficient Cloud Fault-Tolerant MapReduce. In 2016 16th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, CCGrid ’16, pages 443–452,
2016.

[66] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba Shrira.
HQ Replication: A Hybrid Quorum Protocol for Byzantine Fault Tolerance. In Pro-
ceedings of the 7th Symposium on Operating Systems Design and Implementation,
OSDI ’06, page 177–190, USA, 2006.

[67] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Concepts and
Abstract Syntax. Technical report, W3 Consortium, 2014.

[68] Guohao Dai, Zhenhua Zhu, Tianyu Fu, Chiyue Wei, Bangyan Wang, Xiangyu Li, Yuan
Xie, Huazhong Yang, and Yu Wang. Dimmining: pruning-efficient and parallel graph
mining on near-memory-computing. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, ISCA ’22, page 130–145, 2022.

[69] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegel-
man. Narwhal and Tusk: A DAG-Based Mempool and Efficient BFT Consensus. In
Proceedings of the Seventeenth European Conference on Computer Systems, EuroSys
’22, page 34–50, 2022.

134

[70] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin, and
Beng Chin Ooi. Towards Scaling Blockchain Systems via Sharding. In Proceedings
of the 2019 International Conference on Management of Data, SIGMOD ’19, page
123–140, 2019.

[71] Maximilien Danisch, Oana Balalau, and Mauro Sozio. Listing K-Cliques in Sparse
Real-World Graphs. In Proceedings of the 2018 World Wide Web Conference, WWW
’18, pages 589–598, 2018.

[72] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large
clusters. In 6th Symposium on Operating Systems Design & Implementation (OSDI
04), San Francisco, CA, December 2004. USENIX Association.

[73] Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu. DAMYSUS:
Streamlined BFT Consensus Leveraging Trusted Components. In Proceedings of the
Seventeenth European Conference on Computer Systems, EuroSys ’22, page 1–16,
2022.

[74] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin,
Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip Murlak, Stefan
Plantikow, Petra Selmer, Hannes Voigt, Oskar van Rest, Domagoj Vrgoc, Mingxi
Wu, and Fred Zemke. Graph Pattern Matching in GQL and SQL/PGQ. CoRR,
abs/2112.06217, 2021.

[75] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. Aggregation Support for Modern
Graph Analytics in TigerGraph. In Proceedings of the ACM International Conference
on Management of Data, SIGMOD ’20, page 377–392, 2020.

[76] Laxman Dhulipala, Guy E Blelloch, and Julian Shun. Low-latency graph stream-
ing using compressed purely-functional trees. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’19), pages
918–934, 2019.

[77] Vinicius Dias, Carlos H. C. Teixeira, Dorgival Guedes, Wagner Meira, and Srinivasan
Parthasarathy. Fractal: A General-Purpose Graph Pattern Mining System. In Pro-
ceedings of the 2019 International Conference on Management of Data, SIGMOD ’19,
pages 1357–1374, 2019.

[78] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the Presence of
Partial Synchrony. Journal of the ACM, 35(2):288–323, April 1988.

[79] William Eberle and Lawrence Holder. Discovering structural anomalies in graph-based
data. In Seventh IEEE international conference on data mining workshops (ICDMW
2007), pages 393–398. IEEE, 2007.

[80] Hartmut Ehrig, Annegret Habel, and Hans-Jörg Kreowski. Introduction to Graph
Grammars with Applications to Semantic Networks. Computers & Mathematics with
Applications, 23(6-9):557–572, 1992.

[81] Muhammad El-Hindi, Carsten Binnig, Arvind Arasu, Donald Kossmann, and Ravi
Ramamurthy. BlockchainDB: A Shared Database on Blockchains. Proceedings of the
VLDB Endowment, 12(11):1597–1609, July 2019.

135

[82] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis.
Grami: Frequent subgraph and pattern mining in a single large graph. Proceedings of
the VLDB Endowment, 7(7):517–528, March 2014.

[83] Grace Fan, Wenfei Fan, Yuanhao Li, Ping Lu, Chao Tian, and Jingren Zhou. Ex-
tending graph patterns with conditions. In Proceedings of the ACM International
Conference on Management of Data, pages 715–729, 2020.

[84] Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Tianyi Chen, Zhenzhou Tian, Xiaodong
Zhang, Qinghua Zheng, and Ting Liu. Frequent Subgraph Based Familial Classi-
fication of Android Malware. In 27th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2016, pages 24–35, 2016.

[85] Wenfei Fan, Yinghui Wu, and Jingbo Xu. Functional Dependencies for Graphs. In
Proceedings of the 2016 International Conference on Management of Data, SIGMOD
’16, page 1843–1857, 2016.

[86] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker,
Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Tay-
lor. Cypher: An Evolving Query Language for Property Graphs. In Proceedings
of the ACM International Conference on Management of Data, SIGMOD ’18, page
1433–1445, 2018.

[87] Zerui Ge, Dumitrel Loghin, Beng Chin Ooi, Pingcheng Ruan, and Tianwen Wang.
Hybrid Blockchain Database Systems: Design and Performance. Proceedings of the
VLDB Endowment, 15(5):1092–1104, May 2022.

[88] Mira Gonen and Yuval Shavitt. Approximating the Number of Network Motifs. In-
ternet Mathematics, 6(3):349–372, 2009.

[89] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In Pro-
ceedings of the 10th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI ’12, pages 17–30, 2012.

[90] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. GraphX: Graph Processing in a Distributed Dataflow Frame-
work. In Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation, OSDI ’14, pages 599–613, 2014.

[91] J.A. Green. Sets and Groups: A First Course in Algebra. Library of Mathematics.
Routledge & Kegan Paul, 1988.

[92] Fabiola Greve, Murilo Santos de Lima, Luciana Arantes, and Pierre Sens. A Time-
Free Byzantine Failure Detector for Dynamic Networks. In 2012 Ninth European
Dependable Computing Conference, pages 191–202, 2012.

[93] Joshua A. Grochow and Manolis Kellis. Network Motif Discovery Using Subgraph
Enumeration and Symmetry-Breaking. In Research in Computational Molecular Bi-
ology, pages 92–106, 2007.

136

[94] Chuangyi Gui, Xiaofei Liao, Long Zheng, and Hai Jin. Cyclosa: Redundancy-Free
Graph Pattern Mining via Set Dataflow. In 2023 USENIX Annual Technical Confer-
ence (USENIX ATC 23), pages 71–85, Boston, MA, July 2023. USENIX Association.

[95] Chuangyi Gui, Xiaofei Liao, Long Zheng, Pengcheng Yao, Qinggang Wang, and Hai
Jin. SumPA: Efficient Pattern-Centric Graph Mining with Pattern Abstraction. In
30th International Conference on Parallel Architectures and Compilation Techniques,
PACT ’21, pages 318–330, 2021.

[96] Wentian Guo, Yuchen Li, Mo Sha, Bingsheng He, Xiaokui Xiao, and Kian-Lee Tan.
Gpu-accelerated subgraph enumeration on partitioned graphs. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data, SIGMOD
’20, page 1067–1082, 2020.

[97] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph Grammars with Nega-
tive Application Conditions. Fundamenta Informaticae, 26(3-4):287–313, 1996.

[98] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. The Case for Byzantine
Fault Detection. In Proceedings of the 2nd Conference on Hot Topics in System
Dependability - Volume 2, HOTDEP ’06, page 5, USA, 2006.

[99] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. PeerReview: Practical
Accountability for Distributed Systems. In Proceedings of the ACM Symposium on
Operating Systems Principles, SOSP ’07, page 175–188, 2007.

[100] Bronwyn Hall, Adam Jaffe, and Manuel Trajtenberg. The NBER Patent Citation
Data File: Lessons, Insights and Methodological Tools. NBER Working Paper 8498,
2001.

[101] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin Han. Ef-
ficient Subgraph Matching: Harmonizing Dynamic Programming, Adaptive Matching
Order, and Failing Set Together. In Proceedings of the 2019 International Conference
on Management of Data, SIGMOD ’19, pages 1429–1446, 2019.

[102] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. TurboISO: Towards Ultrafast and
Robust Subgraph Isomorphism Search in Large Graph Databases. In Proceedings
of the 2013 International Conference on Management of Data, SIGMOD ’13, pages
337–348, 2013.

[103] Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. Technical report,
W3 Consortium, 2013.

[104] Mohammad Al Hasan and Mohammed Zaki. Musk: Uniform Sampling of k-Maximal
Patterns. In Proceedings of the 2009 SIAM International Conference on Data Mining
(SDM), pages 650–661, 2009.

[105] Jelle Hellings and Mohammad Sadoghi. Coordination-Free Byzantine Replication with
Minimal Communication Costs. In Carsten Lutz and Jean Christoph Jung, editors,
23rd International Conference on Database Theory, volume 155 of ICDT ’20, pages
17:1–17:20, Dagstuhl, Germany, 2020.

137

[106] Jelle Hellings and Mohammad Sadoghi. ByShard: Sharding in a Byzantine Environ-
ment. Proceedings of the VLDB Endowment, 14(11):2230–2243, October 2021.

[107] Loc Hoang, Vishwesh Jatala, Xuhao Chen, Udit Agarwal, Roshan Dathathri,
Gurbinder Gill, and Keshav Pingali. Disttc: High performance distributed triangle
counting. In IEEE High Performance Extreme Computing Conference (HPEC ’19),
pages 1–7, 2019.

[108] Tomaz Hocevar and Janez Demsar. A Combinatorial Approach to Graphlet Counting.
Bioinformatics, 30(4):559–565, 2014.

[109] Sungpack Hong, Siegfried Depner, Thomas Manhardt, Jan Van Der Lugt, Merijn Ver-
straaten, and Hassan Chafi. PGX.D: A Fast Distributed Graph Processing Engine. In
Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’15, pages 1–12, 2015.

[110] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. Open Graph Benchmark: Datasets for Machine
Learning on Graphs. CoRR, abs/2005.00687, 2020.

[111] Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shivaram Venkataraman, Vladimir
Braverman, and Ion Stoica. ASAP: Fast, Approximate Graph Pattern Mining at
Scale. In Proceedings of the 13th USENIX Conference on Operating Systems Design
and Implementation, OSDI ’18, pages 745–761, 2018.

[112] Gregoire Jacob, Ralf Hund, Christopher Kruegel, and Thorsten Holz. JACKSTRAWS:
picking command and control connections from bot traffic. In Proceedings of the 20th
USENIX Conference on Security, SEC’11, page 29, USA, 2011.

[113] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall,
Inc., USA, 1988.

[114] Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora. Peregrine: A Pattern-Aware
Graph Mining System. In Proceedings of the Fifteenth European Conference on Com-
puter Systems, EuroSys ’20, 2020.

[115] Kasra Jamshidi and Keval Vora. Osirisbft: Say no to task replication for scalable
byzantine fault tolerant analytics. In Proceedings of the 29th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming, PPoPP ’24, page
94–108, 2024.

[116] Kasra Jamshidi, Harry Xu, and Keval Vora. Accelerating Graph Mining Systems
with Subgraph Morphing. In Proceedings of the Eighteenth European Conference on
Computer Systems, EuroSys ’23, page 162–181, 2023.

[117] Tommi Junttila and Petteri Kaski. Engineering an Efficient Canonical Labeling Tool
for Large and Sparse Graphs. In Proceedings of the Meeting on Algorithm Engineering
& Expermiments, pages 135–149, 2007.

[118] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design Guidelines for High
Performance RDMA Systems. In Proceedings of the 2016 USENIX Annual Technical
Conference, ATC ’16, page 437–450, 2016.

138

[119] Miltiadis Kandias, Nikos Virvilis, and Dimitris Gritzalis. The Insider Threat in Cloud
Computing. In Sandro Bologna, Bernhard Hämmerli, Dimitris Gritzalis, and Stephen
Wolthusen, editors, Critical Information Infrastructure Security, pages 93–103, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[120] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, and Semih
Salihoglu. Graphflow: An Active Graph Database. In Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD ’17, page 1695–1698,
2017.

[121] George Karypis and Vipin Kumar. Parallel Multilevel K-Way Partitioning Scheme
for Irregular Graphs. In Proceedings of the 1996 ACM/IEEE Conference on Super-
computing, Supercomputing ’96, pages 35–es, 1996.

[122] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th An-
nual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part I, volume 10401 of Lecture Notes in Computer Science, pages
357–388. Springer, 2017.

[123] Hyeonji Kim, Juneyoung Lee, Sourav S. Bhowmick, Wook-Shin Han, JeongHoon Lee,
Seongyun Ko, and Moath H.A. Jarrah. DUALSIM: Parallel Subgraph Enumeration
in a Massive Graph on a Single Machine. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, pages 1231–1245, 2016.

[124] Jinha Kim, Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, and Hwanjo Yu. OPT: A
New Framework for Overlapped and Parallel Triangulation in Large-Scale Graphs. In
Proceedings of the 2014 International Conference on Management of Data, SIGMOD
’14, pages 637–648, 2014.

[125] Kyoungmin Kim, In Seo, Wook-Shin Han, Jeong-Hoon Lee, Sungpack Hong, Hassan
Chafi, Hyungyu Shin, and Geonhwa Jeong. TurboFlux: A Fast Continuous Subgraph
Matching System for Streaming Graph Data. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD ’18, pages 411–426, 2018.

[126] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta,
and Bryan Ford. OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Shard-
ing. In 2018 IEEE Symposium on Security and Privacy, SP ’18, pages 583–598, 2018.

[127] Mihail N. Kolountzakis, Gary L. Miller, Richard Peng, and Charalampos E.
Tsourakakis. Efficient Triangle Counting in Large Graphs via Degree-Based Vertex
Partitioning. Internet Mathematics, 8(1-2):161–185, 2012.

[128] Anton Korshunov, Ivan Beloborodov, Nazar Buzun, Valeriy Avanesov, Roman Pas-
tukhov, Kyrylo Chykhradze, Ilya Kozlov, Andrey Gomzin, Ivan Andrianov, Andrey
Sysoev, Stepan Ipatov, Ilya Filonenko, Christina Chuprina, Denis Turdakov, and
Sergey Kuznetsov. Social network analysis: Methods and applications. In Proceedings
of the Institute for System Programming of RAS, pages 439–456, 2014.

139

[129] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong.
Zyzzyva: Speculative Byzantine Fault Tolerance. ACM Transactions on Computer
Systems, 27(4), January 2010.

[130] Ramakrishna Kotla and Mike Dahlin. High throughput Byzantine fault tolerance. In
International Conference on Dependable Systems and Networks, 2004, DSN ’04, pages
575–584, 2004.

[131] Pradeep Kumar and H Howie Huang. Graphone: A data store for real-time analytics
on evolving graphs. In Proceedings of the USENIX Conference on File and Storage
Technologies (FAST ’19), pages 249–263, 2019.

[132] Amlan Kusum, Keval Vora, Rajiv Gupta, and Iulian Neamtiu. Efficient Processing
of Large Graphs via Input Reduction. In Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing, HPDC ’16,
pages 245–257, 2016.

[133] Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. Scalable Subgraph Enumeration
in MapReduce. Proceedings of the VLDB Endowment, 8(10):974–985, June 2015.

[134] Longbin Lai, Lu Qin, Xuemin Lin, Ying Zhang, Lijun Chang, and Shiyu Yang.
Scalable Distributed Subgraph Enumeration. Proceedings of the VLDB Endowment,
10(3):217–228, November 2016.

[135] Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Moscibroda. TrInc: Small
Trusted Hardware for Large Distributed Systems. In Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation, NSDI ’09, page 1–14,
USA, 2009.

[136] Xin Li, Michael C. Huang, Kai Shen, and Lingkun Chu. An Empirical Study of
Memory Hardware Errors in a Server Farm. In Proceedings of the 3rd Workshop on
on Hot Topics in System Dependability, HotDep’07, page 13–es, 2007.

[137] Zhepeng (Lionel) Li, Xiao Fang, and Olivia R. Liu Sheng. A Survey of Link Rec-
ommendation for Social Networks: Methods, Theoretical Foundations, and Future
Research Directions. ACM Transactions on Management Information Systems, 9(1),
October 2017.

[138] David Liben-Nowell and Jon Kleinberg. The Link Prediction Problem for Social
Networks. In Proceedings of the Twelfth International Conference on Information
and Knowledge Management, CIKM ’03, page 556–559, 2003.

[139] Chenhao Ma, Reynold Cheng, Laks V. S. Lakshmanan, Tobias Grubenmann, Yixiang
Fang, and Xiaodong Li. LINC: A Motif Counting Algorithm for Uncertain Graphs.
Proceedings of the VLDB Endowment, 13(2):155–168, October 2019.

[140] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: A System for Large-Scale Graph Pro-
cessing. In Proceedings of the 2010 International Conference on Management of Data,
SIGMOD ’10, pages 135–146, 2010.

140

[141] Dror Marcus and Yuval Shavitt. RAGE: A Rapid Graphlet Enumerator for Large
Networks. Computer Networks, 56(2):810–819, February 2012.

[142] Mugilan Mariappan, Joanna Che, and Keval Vora. DZiG: Sparsity-Aware Incremental
Processing of Streaming Graphs. In Proceedings of the Sixteenth European Conference
on Computer Systems, EuroSys ’21, pages 83–98, 2021.

[143] Mugilan Mariappan and Keval Vora. GraphBolt: Dependency-Driven Synchronous
Processing of Streaming Graphs. In Proceedings of the Fourteenth EuroSys Conference
2019, EuroSys ’19, pages 1–16, 2019.

[144] Daniel Mawhirter, Sam Reinehr, Wei Han, Noah Fields, Miles Claver, Connor Holmes,
Jedidiah McClurg, Tongping Liu, and Bo Wu. Dryadic: Flexible and Fast Graph
Pattern Matching at Scale. In 30th International Conference on Parallel Architectures
and Compilation Techniques, PACT ’21, pages 289–303, 2021.

[145] Daniel Mawhirter, Sam Reinehr, Connor Holmes, Tongping Liu, and Bo Wu.
GraphZero: A High-Performance Subgraph Matching System. SIGOPS Operating
Systems Review, 55(1):21–37, June 2021.

[146] Daniel Mawhirter and Bo Wu. AutoMine: Harmonizing High-Level Abstraction and
High Performance for Graph Mining. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP ’19, pages 509–523, 2019.

[147] Daniel Mawhirter, Bo Wu, Dinesh Mehta, and Chao Ai. ApproxG: Fast Approxi-
mate Parallel Graphlet Counting through Accuracy Control. In Proceedings of the
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGrid ’18, pages 533–542, 2018.

[148] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, ii. Journal of
Symbolic Computation, 60:94–112, 2014.

[149] Frank McSherry, Michael Isard, and Derek G. Murray. Scalability! but at what COST?
In Workshop on Hot Topics in Operating Systems (HotOS XV), 2015.

[150] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. Differ-
ential Dataflow. In CIDR, 2013.

[151] Ine Melckenbeeck, Pieter Audenaert, Didier Colle, and Mario Pickavet. Efficiently
Counting All Orbits of Graphlets of Any Order in a Graph Using Autogenerated
Equations. Bioinformatics, 34(8):1372–1380, November 2017.

[152] Ine Melckenbeeck, Pieter Audenaert, Thomas Van Parys, Yves Van De Peer, Didier
Colle, and Mario Pickavet. Optimising Orbit Counting of Arbitrary Order by Equation
Selection. BMC Bioinformatics, 20(1), January 2019.

[153] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu. Revisiting Memory Errors
in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from
the Field. In 2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’15, pages 415–426, 2015.

141

[154] Amine Mhedhbi and Semih Salihoglu. Optimizing Subgraph Queries by Combin-
ing Binary and Worst-Case Optimal Joins. Proceedings of the VLDB Endowment,
12(11):1692–1704, July 2019.

[155] Nema Milaninia. Biases in Machine Learning Models and Big Data Analytics: The
International Criminal and Humanitarian Law Implications. International Review of
the Red Cross, 102(913):199–234, 2020.

[156] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and
Uri Alon. Network Motifs: Simple Building Blocks of Complex Networks. Science,
298(5594):824–827, 2002.

[157] Mircea Moca, Gheorghe Cosmin Silaghi, and Gilles Fedak. Distributed Results Check-
ing for MapReduce in Volunteer Computing. In 2011 IEEE International Symposium
on Parallel and Distributed Processing Workshops and PhD Forum, pages 1847–1854,
2011.

[158] Aida Mrzic, Pieter Meysman, Wout Bittremieux, Pieter Moris, Boris Cule, Bart
Goethals, and Kris Laukens. Grasping Frequent Subgraph Mining for Bioinformatics
Applications. BioData Mining, 11(1):20, 2018.

[159] Senthil Nathan, Chander Govindarajan, Adarsh Saraf, Manish Sethi, and Praveen Jay-
achandran. Blockchain Meets Database: Design and Implementation of a Blockchain
Relational Database. Proceedings of the VLDB Endowment, 12(11):1539–1552, July
2019.

[160] Ray Neiheiser, Miguel Matos, and Luís Rodrigues. Kauri: Scalable BFT Consensus
with Pipelined Tree-Based Dissemination and Aggregation. In Proceedings of the
ACM Symposium on Operating Systems Principles, SOSP ’21, page 35–48, 2021.

[161] Neo4j, Inc. Neo4j Graph Database, 2022. Version 4.4.

[162] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A Lightweight Infrastruc-
ture for Graph Analytics. In Proceedings of the 24th ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 456–471, 2013.

[163] Edmund B. Nightingale, John R. Douceur, and Vince Orgovan. Cycles, Cells and
Platters: An Empirical Analysis of Hardware Failures on a Million Consumer PCs. In
Proceedings of the Sixth Conference on Computer Systems, EuroSys ’11, page 343–356,
2011.

[164] Caleb C. Noble and Diane J. Cook. Graph-Based Anomaly Detection. In Proceedings
of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’03, page 631–636, 2003.

[165] Ricardo Padilha and Fernando Pedone. Augustus: Scalable and Robust Storage for
Cloud Applications. In Proceedings of the 8th ACM European Conference on Computer
Systems, EuroSys ’13, page 99–112, 2013.

[166] Lucia Pallottino, Eric M Feron, and Antonio Bicchi. Conflict resolution problems
for air traffic management systems solved with mixed integer programming. IEEE
Transactions on Intelligent Transportation Systems, 3(1):3–11, 2002.

142

[167] A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. Counting
and Sampling Triangles from a Graph Stream. Proceedings of the VLDB Endowment,
6(14):1870–1881, September 2013.

[168] Ali Pinar, Comandur Seshadhri, and Vaidyanathan Vishal. ESCAPE: Efficiently
Counting All 5-Vertex Subgraphs. In Proceedings of the 26th International Conference
on World Wide Web, WWW ’17, pages 1431–1440, 2017.

[169] Daniel Presser, Lau Cheuk Lung, and Miguel Correia. Greft: Arbitrary Fault-Tolerant
Distributed Graph Processing. In 2015 IEEE International Congress on Big Data,
pages 452–459, 2015.

[170] Hao Qi, Yu Zhang, Ligang He, Kang Luo, Jun Huang, Haoyu Lu, Jin Zhao, and Hai
Jin. PSMiner: A Pattern-Aware Accelerator for High-Performance Streaming Graph
Pattern Mining. In 2023 60th ACM/IEEE Design Automation Conference (DAC),
pages 1–6, 2023.

[171] Zhengping Qian, Chenqiang Min, Longbin Lai, Yong Fang, Gaofeng Li, Youyang Yao,
Bingqing Lyu, Xiaoli Zhou, Zhimin Chen, and Jingren Zhou. GAIA: A System for
Interactive Analysis on Distributed Graphs Using a High-Level Language. In 18th
USENIX Symposium on Networked Systems Design and Implementation, NSDI ’21,
pages 321–335. USENIX Association, April 2021.

[172] Miao Qiao, Hao Zhang, and Hong Cheng. Subgraph Matching: On Compression and
Computation. Proceedings of the VLDB Endowment, 11(2):176–188, October 2017.

[173] Mahmudur Rahman, Mansurul Bhuiyan, and Mohammad Al Hasan. GRAFT: An Ap-
proximate Graphlet Counting Algorithm for Large Graph Analysis. In Proceedings of
the 21st ACM International Conference on Information and Knowledge Management,
CIKM ’12, page 1467–1471, 2012.

[174] Mahmudur Rahman and Mohammad Al Hasan. Approximate triangle counting al-
gorithms on multi-cores. In 2013 IEEE International Conference on Big Data, Big
Data ’13, pages 127–133, 2013.

[175] Xuguang Ren, Junhu Wang, Wook-Shin Han, and Jeffrey Xu Yu. Fast and Robust Dis-
tributed Subgraph Enumeration. Proceedings of the VLDB Endowment, 12(11):1344–
1356, 2019.

[176] Tahsin Reza, Matei Ripeanu, Nicolas Tripoul, Geoffrey Sanders, and Roger Pearce.
PruneJuice: Pruning Trillion-Edge Graphs to a Precise Pattern-Matching Solution. In
Proceedings of the International Conference for High Performance Computing, Net-
working, Storage, and Analysis, SC ’18, pages 265–281, 2018.

[177] Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov. BASE: Using Abstraction to
Improve Fault Tolerance. SIGOPS Operating Systems Review, 35(5):15–28, October
2001.

[178] Marko A. Rodriguez. The Gremlin Graph Traversal Machine and Language. In
Proceedings of the 15th Symposium on Database Programming Languages, DBPL 2015,
page 1–10, 2015.

143

[179] Rahmtin Rotabi, Krishna Kamath, Jon Kleinberg, and Aneesh Sharma. Detecting
Strong Ties Using Network Motifs. In Proceedings of the 26th International Conference
on World Wide Web Companion, WWW ’17 Companion, pages 983–992, 2017.

[180] Nicholas P. Roth, Vasileios Trigonakis, Sungpack Hong, Hassan Chafi, Anthony Pot-
ter, Boris Motik, and Ian Horrocks. PGX.D/Async: A Scalable Distributed Graph
Pattern Matching Engine. In Proceedings of the Fifth International Workshop on
Graph Data-Management Experiences & Systems, GRADES ’17, pages 1–6, 2017.

[181] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel.
Chaos: Scale-out Graph Processing from Secondary Storage. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP ’15, pages 410–424, 2015.

[182] Tanay Kumar Saha and Mohammad Al Hasan. FS3: A sampling based method for
top-k frequent subgraph mining. In 2014 IEEE International Conference on Big Data
(Big Data), pages 72–79, 2014.

[183] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar, Renzo
Angles, Walid Aref, Marcelo Arenas, Maciej Besta, Peter A. Boncz, Khuzaima Daud-
jee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bernhard Haslhofer, Tim
Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi, Vasiliki Kalavri, Hugo Kapp,
Wim Martens, M. Tamer Özsu, Eric Peukert, Stefan Plantikow, Mohamed Ragab,
Matei R. Ripeanu, Semih Salihoglu, Christian Schulz, Petra Selmer, Juan F. Sequeda,
Joshua Shinavier, Gábor Szárnyas, Riccardo Tommasini, Antonino Tumeo, Alexandru
Uta, Ana Lucia Varbanescu, Hsiang-Yun Wu, Nikolay Yakovets, Da Yan, and Eiko
Yoneki. The Future is Big Graphs: A Community View on Graph Processing Systems.
Communications of the ACM, 64(9):62–71, August 2021.

[184] Semih Salihoglu and Jennifer Widom. GPS: A Graph Processing System. In Pro-
ceedings of the 25th International Conference on Scientific and Statistical Database
Management, SSDBM, pages 1–12, 2013.

[185] Soumajyoti Sarkar, Ruocheng Guo, and Paulo Shakarian. Using Network Motifs to
Characterize Temporal Network Evolution Leading to Diffusion Inhibition. CoRR,
abs/1903.00862, 2019.

[186] Fred B. Schneider. Implementing Fault-Tolerant Services Using the State Machine
Approach: A Tutorial. ACM Computing Survey, 22(4):299–319, December 1990.

[187] Tom Schouwenaars, Bart De Moor, Eric Feron, and Jonathan How. Mixed integer
programming for multi-vehicle path planning. In 2001 European Control Conference,
ECC ’01, pages 2603–2608. IEEE, 2001.

[188] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM Errors in
the Wild: A Large-Scale Field Study. Communications of the ACM, 54(2):100–107,
February 2011.

[189] Uwe Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer and
System Sciences, 37(3):312–323, 1988.

144

[190] Marco Serafini, Gianmarco De Francisci Morales, and Georgos Siganos. QFrag: Dis-
tributed Graph Search via Subgraph Isomorphism. In Proceedings of the 2017 Sym-
posium on Cloud Computing, SoCC ’17, pages 214–228, 2017.

[191] Yingxia Shao, Bin Cui, Lei Chen, Lin Ma, Junjie Yao, and Ning Xu. Parallel Subgraph
Listing in a Large-Scale Graph. In Proceedings of the 2014 International Conference
on Management of Data, SIGMOD ’14, pages 625–636, 2014.

[192] Tianhui Shi, Mingshu Zhai, Yi Xu, and Jidong Zhai. GraphPi: High Performance
Graph Pattern Matching through Effective Redundancy Elimination. In Proceedings
of the International Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC ’20, pages 1–14, 2020.

[193] Julian Shun and Guy E. Blelloch. Ligra: A Lightweight Graph Processing Frame-
work for Shared Memory. In Proceedings of the 18th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’13, pages 135–146, 2013.

[194] Julian Shun and Kanat Tangwongsan. Multicore triangle computations without tun-
ing. In 2015 IEEE 31st International Conference on Data Engineering, pages 149–160,
2015.

[195] George M. Slota and Kamesh Madduri. Fast approximate subgraph counting and
enumeration. In 2013 42nd International Conference on Parallel Processing, ICPP
’13, pages 210–219, 2013.

[196] George M. Slota and Kamesh Madduri. Complex network analysis using parallel
approximate motif counting. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, IPDPS ’14, pages 405–414, 2014.

[197] Qi Song, Mohammad Hossein Namaki, and Yinghui Wu. Answering why-questions
for subgraph queries in multi-attributed graphs. In IEEE International Conference
on Data Engineering (ICDE ’19), pages 40–51, 2019.

[198] Julian James Stephen and Patrick Eugster. Assured Cloud-Based Data Analysis with
ClusterBFT. In 14th International Middleware Conference, volume LNCS-8275 of
Middleware ’13, pages 82–102, Beijing, China, December 2013. Springer. Part 1:
Distributed Protocols.

[199] Shixuan Sun and Qiong Luo. In-Memory Subgraph Matching: An In-Depth Study. In
Proceedings of the 2020 International Conference on Management of Data, SIGMOD
’20, pages 1083–1098, 2020.

[200] Florian Suri-Payer, Matthew Burke, Zheng Wang, Yunhao Zhang, Lorenzo Alvisi, and
Natacha Crooks. Basil: Breaking up BFT with ACID (Transactions). In Proceedings
of the ACM Symposium on Operating Systems Principles, SOSP ’21, page 1–17, 2021.

[201] Tamás Szabó, Sebastian Erdweg, and Markus Voelter. IncA: a DSL for the definition
of incremental program analyses. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ASE ’16, page 320–331, 2016.

145

[202] Nishil Talati, Haojie Ye, Yichen Yang, Leul Belayneh, Kuan-Yu Chen, David Blaauw,
Trevor Mudge, and Ronald Dreslinski. NDMiner: accelerating graph pattern mining
using near data processing. In Proceedings of the 49th Annual International Sympo-
sium on Computer Architecture, ISCA ’22, page 146–159, 2022.

[203] N. Talukder and M. J. Zaki. "a distributed approach for graph mining in massive
networks". Data Mining and Knowledge Discovery, 30(5):1024–1052, September 2016.

[204] Michiaki Tatsubori and Shohei Hido. Opportunistic Adversaries: On Imminent
Threats to Learning-Based Business Automation. In Proceedings of the 2012 Annual
SRII Global Conference, SRII ’12, page 120–129, USA, 2012.

[205] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos Siganos, Mo-
hammed J. Zaki, and Ashraf Aboulnaga. Arabesque: A System for Distributed Graph
Mining. In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP
’15, pages 425–440, 2015.

[206] Harsh Thakkar, Dharmen Punjani, Jens Lehmann, and Sören Auer. Two for One:
Querying Property Graph Databases Using SPARQL via Gremlinator. In Proceed-
ings of the 1st ACM SIGMOD Joint International Workshop on Graph Data Man-
agement Experiences & Systems (GRADES) and Network Data Analytics (NDA),
GRADES-NDA ’18, 2018.

[207] Tian Tian, Jun Zhu, Fen Xia, Xin Zhuang, and Tong Zhang. Crowd Fraud Detection
in Internet Advertising. In Proceedings of the 24th International Conference on World
Wide Web, WWW ’15, page 1100–1110, 2015.

[208] Vasileios Trigonakis, Jean-Pierre Lozi, Tomás Faltín, Nicholas P. Roth, Iraklis
Psaroudakis, Arnaud Delamare, Vlad Haprian, Calin Iorgulescu, Petr Koupy, Jin-
soo Lee, Sungpack Hong, and Hassan Chafi. aDFS: An Almost Depth-First-Search
Distributed Graph-Querying System. In 2021 USENIX Annual Technical Conference,
ATC ’21, pages 209–224, 2021.

[209] Charalampos E. Tsourakakis, U. Kang, Gary L. Miller, and Christos Faloutsos.
DOULION: Counting Triangles in Massive Graphs with a Coin. In Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’09, page 837–846, 2009.

[210] Julian Ullmann. Bit-vector algorithms for binary constraint satisfaction and subgraph
isomorphism. Journal of Experimental Algorithmics, 15:1–1, 2011.

[211] Leslie G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103–111, August 1990.

[212] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. PGQL:
A property graph query language. In Proceedings of the Fourth International Work-
shop on Graph Data Management Experiences and Systems, GRADES ’16, 2016.

[213] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, and Sam Madden. Tolerating
Byzantine Faults in Transaction Processing Systems Using Commit Barrier Schedul-
ing. In Proceedings of the ACM Symposium on Operating Systems Principles, SOSP
’07, page 59–72, 2007.

146

[214] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk
Lung. Spin One’s Wheels? Byzantine Fault Tolerance with a Spinning Primary. In
Proceedings of the 2009 28th IEEE International Symposium on Reliable Distributed
Systems, SRDS ’09, page 135–144, USA, 2009.

[215] Keval Vora. LUMOS: Dependency-Driven Disk-based Graph Processing. In 2019
USENIX Annual Technical Conference, ATC ’19, pages 429–442, July 2019.

[216] Keval Vora, Rajiv Gupta, and Guoqing Xu. KickStarter: Fast and Accurate Com-
putations on Streaming Graphs via Trimmed Approximations. In Proceedings of the
22nd International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’17, pages 237–251, 2017.

[217] Keval Vora, Sai Charan Koduru, and Rajiv Gupta. ASPIRE: Exploiting Asynchronous
Parallelism in Iterative Algorithms Using a Relaxed Consistency Based DSM. In
Proceedings of the 2014 International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’14, pages 861–878, 2014.

[218] Keval Vora, Chen Tian, Rajiv Gupta, and Ziang Hu. CoRAL: Confined Recovery
in Distributed Asynchronous Graph Processing. In Proceedings of the 22nd Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’17, page 223–236, 2017.

[219] Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, and Guoqing Harry Xu.
RStream: Marrying Relational Algebra with Streaming for Efficient Graph Mining
on a Single Machine. In Proceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation, OSDI ’18, pages 763–782, 2018.

[220] Li Wang, Hongying Zhao, Jing Li, Yingqi Xu, Yujia Lan, Wenkang Yin, Xiaoqin Liu,
Lei Yu, Shihua Lin, Michael Yifei Du, Xia Li, Yun Xiao, and Yunpeng Zhang. Iden-
tifying Functions and Prognostic Biomarkers of Network Motifs Marked By Diverse
Chromatin States in Human Cell Lines. Oncogene, 39(3):677–689, September 2019.

[221] Xuyun Wen, Wei-Neng Chen, Ying Lin, Tianlong Gu, Huaxiang Zhang, Yun Li, Yi-
long Yin, and Jun Zhang. A Maximal Clique Based Multiobjective Evolutionary Al-
gorithm for Overlapping Community Detection. IEEE Transactions on Evolutionary
Computation, 21(3):363–377, June 2017.

[222] Yibo Wu, Jianfeng Zhu, Wenrui Wei, Longlong Chen, Liang Wang, Shaojun Wei, and
Leibo Liu. Shogun: A Task Scheduling Framework for Graph Mining Accelerators. In
Proceedings of the 50th Annual International Symposium on Computer Architecture,
ISCA ’23, 2023.

[223] Chengshuo Xu, Keval Vora, and Rajiv Gupta. PnP: Pruning and Prediction for Point-
To-Point Iterative Graph Analytics. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’19, pages 587–600, 2019.

[224] Hiroyuki Yamada and Jun Nemoto. Scalar DL: Scalable and Practical Byzantine Fault
Detection for Transactional Database Systems. Proceedings of the VLDB Endowment,
15(7):1324–1336, June 2022.

147

[225] Jaewon Yang and Jure Leskovec. Defining and Evaluating Network Communities
based on Ground-Truth. Knowledge and Information Systems, 42(1):181–213, 2015.

[226] Zhengyi Yang, Longbin Lai, Xuemin Lin, Kongzhang Hao, and Wenjie Zhang. HUGE:
An Efficient and Scalable Subgraph Enumeration System. In Proceedings of the 2021
International Conference on Management of Data, SIGMOD ’21, pages 2049–2062,
2021.

[227] Hong Yao, Qingling Duan, Daoliang Li, and Jianping Wang. An improved K-means
clustering algorithm for fish image segmentation. Mathematical and Computer Mod-
elling, 58(3):790–798, 2013.

[228] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, and Mike
Dahlin. Separating Agreement from Execution for Byzantine Fault Tolerant Ser-
vices. In Proceedings of the ACM Symposium on Operating Systems Principles, SOSP
’03, page 253–267, 2003.

[229] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-
ham. HotStuff: BFT Consensus with Linearity and Responsiveness. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, PODC ’19, page
347–356, 2019.

[230] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient Dis-
tributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing.
In 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI
12), pages 15–28, San Jose, CA, April 2012.

[231] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. Discretized streams: Fault-tolerant streaming computation at scale. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 423–438, 2013.

[232] Stéphane Zampelli, Yves Deville, and Pierre Dupont. Approximate Constrained Sub-
graph Matching. In Peter van Beek, editor, Principles and Practice of Constraint
Programming, CP 2005, pages 832–836, Berlin, Heidelberg, 2005. Springer Berlin Hei-
delberg.

[233] Gensheng Zhang, Damian Jimenez, and Chengkai Li. Maverick: Discovering excep-
tional facts from knowledge graphs. In Proceedings of the ACM International Con-
ference on Management of Data (SIGMOD ’18), pages 1317–1332, 2018.

[234] Hao Zhang, Jeffrey Xu Yu, Yikai Zhang, Kangfei Zhao, and Hong Cheng. Distributed
Subgraph Counting: A General Approach. Proceedings of the VLDB Endowment,
13(12):2493–2507, July 2020.

[235] Cheng Zhao, Zhibin Zhang, Peng Xu, Tianqi Zheng, and Jiafeng Guo. Kaleido: An
Efficient Out-of-core Graph Mining System on A Single Machine. In 36th IEEE
International Conference on Data Engineering, ICDE ’20, pages 673–684, 2020.

148

[236] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gemini: A
Computation-Centric Distributed Graph Processing System. In Proceedings of the
12th USENIX Conference on Operating Systems Design and Implementation, OSDI
’16, pages 301–316, 2016.

[237] Ruoyu Zou and Lawrence B. Holder. Frequent Subgraph Mining on a Single Large
Graph Using Sampling Techniques. In Proceedings of the Eighth Workshop on Mining
and Learning with Graphs, MLG ’10, page 171–178, 2010.

149

Appendix A

Anti-Vertex: Generalizations and
Further Examples

A.1 Generalizations

A.1.1 Other Matching Semantics

The anti-vertex definition provided in Section 4.2 can be used in other matching semantics as
well, including those provided by some graph database management systems like Neo4j [161].

Homomorphism. In homomorphism semantics, m only needs to satisfy the vertex labels
and edge types, and preserve edge relationships. Hence, any data vertex with the correct
edges and labels can fulfill the anti-vertex requirement and invalidate the match, including
previously mapped vertices. C is defined as follows.

C(u) =
⋂︂

v:(u,v)∈E(p)
N(m(v), (u, v), u)

No-Repeated-Edge. No-repeated-edge semantics requires that m provide an injective
mapping from edges in P to edges in G. Hence, for anti-vertices, the data edges that are
already mapped by m cannot invalidate the match, but vertices from m can satisfy the
anti-vertex requirement (i.e., allow repeated vertices). C is defined as follows.

C(u) =
⋂︂

v:(u,v)∈E(p)
N(m(v), (u, v), u) \ m(N(v, (u, v), u))

A.1.2 Property Graphs

When storing and processing graph-structured data it is often convenient to consider not
only the structural information encoded by connections between vertices, but also the myr-
iad information associated with each vertex and edge. Two popular models for rich graph

150

pattern ::= pattern° | a = pattern°
pattern° ::= node_pattern

| node_pattern rel_pattern pattern°
▷ | node_pattern rel_pattern pattern+

▷ | pattern+ rel_pattern pattern°
▷ pattern+ ::= anti_node_pattern
▷ | anti_node_pattern rel_pattern pattern°

node_pattern ::= (a? label_list? map?)
▷ anti_node_pattern ::= (! a? label_list? map?)

rel_pattern ::= -[a? type_list? len?]->
| <-[a? type_list? len?]-
| -[a? type_list? len?]-

label_list ::= : l | : l label_list
map ::= { prop_list }

prop_list ::= k : expr | k : expr, prop_list
type_list ::= : t | type_list | t

len ::= * | *d | *d1. . | *. . d2 | *d1 . . d2
d, d1, d2 ∈ N

Figure A.1: Syntax of Cypher patterns with anti-vertex. Enhancements to the original
grammar are marked with ▷.

data are the Resource Description Framework (RDF) [67] and property graphs [21]. Prop-
erty graphs can model more complex structures than RDF by allowing edges and ver-
tices to be associated with arbitrary key-value pairs called properties. As a result, prop-
erty graphs have gained widespread adoption by both commercial and academic graph
databases [74, 86, 212, 20].

We define property graph based on the definition in Cypher [86], while including anti-
vertices. A property graph is a graph g with additional functions ρ : E(p) → V (p) × V (p)
and π : V (p) ∪ E(p) → P(K × V), where K and V are sets of property keys and values,
respectively. ρ maps each edge to an ordered pair of endpoints, so that a pair of vertices can
have multiple edges between them. The definition of the (e, u)-neighbourhood of a vertex
v generalizes easily to property graphs by using ρ to obtain all edges involving v and by
considering the properties of e and u in addition to their type and labels.

Anti-vertex also naturally generalizes to property graphs. In a property graph, each anti-
vertex u can be incident on multiple edges with directions. Thus, to transform the previous
definitions of C(u) to fit property graphs, it suffices to intersect the (e, u)-neighbourhoods
of v for every e ∈ E(p) where ρ(e) = (u, v) or ρ(e) = (v, u), and perform the same set
differences.

Let g and p be property graphs. The semantics with isomorphism in property graphs can
be expressed by defining C as follows.

C(u) =
⋂︂

e∈E(p):
ρ(e)=(u,v)

N(m(v), e, u) ∩
⋂︂

e∈E(p):
ρ(e)=(v,u)

N(m(v), e, u) \ m(V (p))

Similarly, semantics of anti-vertices with homomorphism and no-repeated-edge semantics
in property graphs can be defined by translating the definitions from Section 4.2.2.

To give intuition for how anti-vertex queries work on property graphs, Table A.1 shows
various subgraph queries where anti-vertices are used in different ways. The data graphs
capture social network information where vertices represent people and edges represent
LIKES and FOLLOWS relationships. The patterns contain anti-vertices, and their textual
description is provided to help familiarize with the concept by demonstrating how anti-
vertices are perceived for social network analysis. For isomorphism and no-repeated-edge
matching semantics, the resulting mappings between query vertices and data vertices are
shown in relational format.

151

MATCH (a: SCHOOL) --(b: BUSINESS),
(a) --(c: FIRE_HYDRANT) --(b),
(a) --(d: FIRE_HYDRANT) --(b)

WHERE NOT EXISTS {
MATCH (a: SCHOOL) --(b: BUSINESS),

(a) --(c: FIRE_HYDRANT) --(b),
(a) --(d: FIRE_HYDRANT) --(b),
(a) --(e: FIRE_HYDRANT) --(b)

}
RETURN a, b, c, d

MATCH (a: SCHOOL) --(b: BUSINESS),
(a) --(c: FIRE_HYDRANT) --(b),
(a) --(d: FIRE_HYDRANT) --(b)

WHERE NOT EXISTS {
MATCH (a) --(e: FIRE_HYDRANT) --(b)
WHERE e<>c

AND e<>d
}
RETURN a, b, c, d

Figure A.2: Cypher queries for the anomaly detection use case.

MATCH (a) --(b), (a) --(c), (a) --(d),
(b) --(c), (b) --(d), (c) --(d)

WHERE NOT EXISTS {
MATCH (a) --(b), (a) --(c), (a) --(d),

(b) --(c), (b) --(d), (c) --(d),
(a) --(e), (b) --(e),
(c) --(e), (d) --(e)

}
RETURN a, b, c, d

MATCH (a) --(b), (a) --(c), (a) --(d),
(b) --(c), (b) --(d), (c) --(d)

WHERE NOT EXISTS {
MATCH (a) --(e), (b) --(e),

(c) --(e), (d) --(e)
WHERE e<>a AND e<>b

AND e<>c AND e<>d
}
RETURN a, b, c, d

Figure A.3: Cypher queries for the maximal cliques use case.
A.2 Anti-Vertex in Graph Query Languages

Recent graph query languages [86, 212, 74, 20] integrate declarative “ASCII-art” pattern ex-
pressions with familiar SQL constructs. In particular, Cypher [86] is a popular graph query
language, used in both academic and commercial graph databases including Neo4j [161],
Amazon Neptune [14], and GraphFlow [120]. The anti-vertex and anti-edge constructs can
be incorporated in existing graph query languages to express complex structural and neigh-
borhood constraints as easily as standard subgraph queries. To demonstrate, in this section
we examine the ways neighbourhood constraints must currently be implemented in Cypher,
and then develop prototype extensions to Cypher’s pattern matching syntax to support
anti-vertices natively.

A.2.1 Constraining Neighbourhoods in Cypher

In this section we show how neighbourhood constraints can currently be expressed in Cypher
by continuing the earlier examples.

Example A.2.1. Consider the anomaly detection and maximal cliques use cases from
Example 4.2.1.

1. Anomaly Detection. There are two obvious approaches to writing a Cypher query for
this problem, both shown in Figure A.2. In the first query, the problem is reformulated
as matching subgraphs with two fire hydrants that are not part of subgraphs containing
three fire hydrants. Expressing the absence of the third fire hydrant in such an indirect
fashion causes tedious repetition and increase in query sizes. This not only makes it
challenging to read and manage those queries (e.g., incrementally adjust to add new
constraints), but also makes the process of writing complex queries (e.g., with multiple
constraints) error-prone. The second query incurs less repetition in the subquery than

152

the first approach, but requires users to specify additional constraints against the outer
query to achieve the desired semantics. Determining the correct constraints to ensure the
subquery does not filter too many or too few subgraphs is difficult in larger queries, as
users must visualize how their query will be matched against complex graph structures.
Both approaches lead to larger, less declarative queries involving error-prone subqueries.
Instead, the absence of another fire hydrant neighbor can be directly expressed using an
anti-vertex.

2. Maximal Cliques. While cliques of a certain size can be easily expressed as a Cypher
query, the maximality requirement can again be expressed in two ways, shown in Fig-
ure A.3. The first query reformulates the problem as finding cliques of size k that are
not contained inside cliques of size k + 1, while the second query finds vertices adjacent
but not equal to all k previously matched vertices.

A.2.2 Augmenting Cypher with Anti-Vertex Semantics

Cypher pattern matching syntax allows node patterns, relationship patterns, and path pat-
terns. Since anti-vertices express absence of neighbors, they will be best expressed using
relationship patterns and path patterns. However, the anti-vertex semantics developed in
Section 4.2.2 do not consider the case where two anti-vertices are connected via an edge
(recall the assumption in Chapter 4 when anti-vertices are first introduced). This leaves
the semantics of fixed/variable-length path fragments containing anti-vertices ambiguous.
While such semantics are left for future work, we envision the grammar to be able to support
arbitrary path patterns with anti-vertices.

Hence, we develop two prototype extensions to Cypher’s pattern matching syntax: one
that allows arbitrary path patterns with anti-vertices (presented in Section A.2.2), and
one that limits the grammar to the anti-vertex semantics defined in this thesis (presented
in Section A.2.2). Allowing arbitrary path patterns requires fewer changes to the original
grammar, and thus easier implementation and validation in existing query engines, at the
cost of some ambiguity regarding the semantics of anti-vertices in fixed/variable-length path
patterns. Meanwhile, keeping the grammar limited requires more complex changes to the
original grammar, but has no ambiguity, and provides flexibility for future work to define
the semantics of path patterns involving an anti-vertex consistently (i.e., handle paths with
one or both endpoints being an anti-vertex consistently).

Grammar with Arbitrary Path Patterns

Following the same notation as Cypher, Figure A.1 shows an extended pattern matching
grammar that supports anti-vertices (extensions added for anti-vertex support are marked
with ▷). This syntax only applies within MATCH clauses of Cypher; the remainder of Cypher’s
syntax is unaffected.
An anti-vertex is defined by the anti_node_pattern construct, which is identical to node_pattern

153

▷ pattern ::= pattern+ | a = pattern+

▷ pattern+ ::= pattern°| pre_pattern
▷ pre_pattern ::= anti_node_pattern simple_rel_pattern pattern°

pattern° ::= node_pattern
| node_pattern rel_pattern pattern°

▷ | node_pattern simple_rel_pattern post_pattern
▷ post_pattern ::= anti_node_pattern
▷ | anti_node_pattern simple_rel_pattern pattern°
▷ anti_node_pattern ::= (! a? label_list? map?)
▷ simple_rel_pattern ::= -[a? type_list?]->
▷ | <-[a? type_list?]- | -[a? type_list?]-

node_pattern ::= (a? label_list? map?)
rel_pattern ::= -[a? type_list? len?]->

| <-[a? type_list? len?]-
| -[a? type_list? len?]-

label_list ::= : l | : l label_list
map ::= { prop_list }

prop_list ::= k : expr | k : expr, prop_list
type_list ::= : t | type_list | t

len ::= * | *d | *d1. . | * . . d2
| *d1 . . d2

d, d1, d2 ∈ N

Figure A.4: Syntax of Cypher patterns with anti-vertex, without arbitrary path patterns.
Enhancements marked with ▷.

from the original Cypher grammar, but marked with a ! symbol†. This construct only ap-
pears in pattern+ either by itself or accompanied by rel_pattern. We compose these frag-
ments with Cypher’s original pattern definition to allow as much programmer flexibility as
possible.

Intuitively, the syntax allows an anti-vertex to be present:

1. at the beginning of the pattern:
(!a)--

2. in the middle of the pattern:
--(!a)--

3. at the end of the pattern:
--(!a)

Since we utilize rel_pattern as defined in the original grammar, fragments of path patterns
with anti-vertices can be expressed in this grammar. For example, the following are allowed:

(a)-[*3]-(!b)

(!a)--(b)

()-[*2]-(!a)-[*2]-()

The pattern+ separates the anti_node_pattern from pattern°, which disallows anti-vertices
at both endpoints of a relationship.

Grammar without Arbitrary Path Patterns

Here we limit the syntax to only express anti-vertices where semantics are well-defined in
this thesis. Figure A.4 shows the extended pattern matching grammar for this case.

The simple_rel_pattern is added to ensure path fragments containing anti-vertices are not
length-based (fixed or variable). simple_rel_pattern is simply rel_pattern without a len pa-

†The ! symbol typically denotes the not operator in programming languages, which fits the meaning for
anti-vertex (data vertex not present).

154

MATCH (a: SCHOOL) --(b: BUSINESS),
(a) --(fh1: FIRE_HYDRANT) --(b),
(a) --(fh2: FIRE_HYDRANT) --(b),
(a) --(!fh3: FIRE_HYDRANT) --(b)

RETURN a, b

(a) Anomaly Detection

MATCH (a) --(b), (a) --(c), (a) --(d),
(b) --(c), (b) --(d), (c) --(d),
(a) --(!e), (b) --(!e),

(c) --(!e), (d) --(!e)
RETURN a, b, c, d

(b) Maximal 4-Clique
Figure A.5: Cypher queries using anti-vertex for use cases in Example 4.2.1.

rameter. The anti_node_pattern construct only appears in pre_pattern and post_pattern,
accompanied by simple_rel_pattern. Intuitively, pre_pattern represents the syntax fragment

(!a)--

and post_pattern represents the syntax fragments

--(!a) and --(!a)--

These fragments are composed with Cypher’s original pattern definition to allow as much
programmer flexibility as possible.
A pattern either begins with an anti-vertex (through pre_pattern) or a standard vertex
(through pattern°). Anti-vertices in the middle or at the end of a pattern are supported
through mutual recursion between pattern° and post_pattern. Two anti-vertices will never
form both endpoints of a relationship because pre_pattern never occurs directly before
post_pattern.

While fixed/variable length path fragments with anti-vertex are disallowed, regular fixed/-
variable length path fragments containing node_pattern can still be expressed (same as
defined in original Cypher grammar). For example, the following are allowed:

(a)-[*2]-()--(!b)

(!a)--(b)

(a)--(!b)--(c)

A.2.3 Examples with the Enhanced Cypher Grammars

We revisit the use cases from Example 4.2.1 to demonstrate how they can be easily expressed
using the modifications to the Cypher grammar. Figure A.5a and Figure A.5b show the
example Cypher queries in Figure 4.2 and Figure 4.3 rewritten declaratively with this syntax.

Example A.2.2. Consider the anomaly detection and maximal cliques Cypher queries
from Example A.2.1.

1. Anomaly Detection. The Cypher query with anti-vertex for anomaly detection is shown
in Figure A.5a. Instead of a long subquery which repeats most of the initial MATCH clause,
or one that must explicitly specify the matching semantics, the query directly expresses
the anomalous subgraph using an anti-vertex to denote absence of a third fire hydrant.
Anti-vertices are expressed similarly to standard vertices, including specifying labels and
properties.

155

2. Maximal Cliques. Figure A.5b shows the Cypher query with anti-vertex for finding max-
imal cliques of size 4. Previously without anti-vertex support (shown in Figure 4.3),
the constraints induced by the matching semantics on the subgraph were explicitly en-
forced in a WHERE clause. Now, the query directly expresses the maximality constraint by
connecting all vertices to an anti-vertex, guaranteeing consistency with the underlying
matching semantics. The anti-vertex e is unconstrained, thus if any data vertex can be
mapped to e (i.e., there is a vertex adjacent to the matches for all of a,b,c,d), then the
subgraph will be discarded, as matching e would create a clique of size 5.

156

Table A.1: Examples with anti-vertices.

Anti-vertex: PERSONc
Vertex: PERSONa

FOLLOWS edge
LIKES edge
Edge without constraints
anti-edge

Anti-vertex :PERSONVertex :PERSON FOLLOWS edge LIKES edge Edge without constraints

No. Pattern Data
Graph

Description
(w.r.t. Isomorphism)

Subgraph Results Notes
Isomorphism No-Repeated

-Edge
Q1

a
b

c

a

b

c

a
b

c

1

2

3

4

5

Find ‘a, b’ such that
i) ‘b’ FOLLOW-s ‘a’, and
ii) ‘a’ isn’t FOLLOW-ed or LIKE-d by a PERSON, ‘c’

(s, p)
(q, p)

Isomorphism Matches

(s, p)

No-repeated-edge MatchesDescriptionData graphPattern

(q, p) is not a match in no-repeated-edge semantics

Notes

p

r t

q Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
iI) ‘b’ doesn’t FOLLOW or LIKE another PERSON ‘c’
(TODO: “another” implies that ’a’ is not equal to ‘c’)

(q, s)
(q, t) (q, s) (q, t) is not a match in no-repeated-edge semantics

Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
ii) ‘a’ and ‘b’ do not LIKE another common PERSON

(p, q)
(s, q)

(p, q)
(s, q)

(p, s) is not a match as p, s both LIKE r
(s, q) is a match as only q LIKEs p

a

b d

c Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ doesn’t FOLLOW or LIKE anyone else
(TODO: Does “anyone else” imply that ’a’ is not equal to ‘d’)

(p, r, q) (p, r, q)
(p, q, q)

(p, q, r) is not a match as r FOLLOWS s and cannot
be mapped to c
(p, q, q) is a valid match in no-repeated-edge
semantics

s

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ isn’t FOLLOW-ed by anyone else

(q, r, s) (q, r, s)
(q, s, s)

(q, s, r) is not a match as r is FOLLOW-ed by p and
cannot be mapped to c
(q, s, s) is a valid match in no-repeated-edge
semantics

a

b

d

c

p

r s

q

1

p

q s

r

p

q

r

s

p

q

r

s
a

b

c

a

b

c

a
b

c

1

2

3

4

5

Find ‘a, b’ such that
i) ‘b’ FOLLOW-s ‘a’, and
ii) ‘a’ isn’t FOLLOW-ed or LIKE-d by a PERSON, ‘c’

(s, p)
(q, p)

Isomorphism Matches

(s, p)

No-repeated-edge MatchesDescriptionData graphPattern

(q, p) is not a match in no-repeated-edge semantics

Notes

p

r t

q Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
iI) ‘b’ doesn’t FOLLOW or LIKE another PERSON ‘c’
(TODO: “another” implies that ’a’ is not equal to ‘c’)

(q, s)
(q, t) (q, s) (q, t) is not a match in no-repeated-edge semantics

Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
ii) ‘a’ and ‘b’ do not LIKE another common PERSON

(p, q)
(s, q)

(p, q)
(s, q)

(p, s) is not a match as p, s both LIKE r
(s, q) is a match as only q LIKEs p

a

b d

c Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ doesn’t FOLLOW or LIKE anyone else
(TODO: Does “anyone else” imply that ’a’ is not equal to ‘d’)

(p, r, q) (p, r, q)
(p, q, q)

(p, q, r) is not a match as r FOLLOWS s and cannot
be mapped to c
(p, q, q) is a valid match in no-repeated-edge
semantics

s

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ isn’t FOLLOW-ed by anyone else

(q, r, s) (q, r, s)
(q, s, s)

(q, s, r) is not a match as r is FOLLOW-ed by p and
cannot be mapped to c
(q, s, s) is a valid match in no-repeated-edge
semantics

a

b

d

c

p

r s

q

1

p

q s

r

p

q

r

s

p

q

r

s

Find a,b such that
i) b FOLLOWs a, and
ii) a is not FOLLOWed/LIKEd by
another PERSON

a b
s p
q p

a b
s p

(q,p) is not a match
in no-repeated-edge se-
mantics

Q2

a
b

c

a

b

c

a
b

c

1

2

3

4

5

Find ‘a, b’ such that
i) ‘b’ FOLLOW-s ‘a’, and
ii) ‘a’ isn’t FOLLOW-ed or LIKE-d by a PERSON, ‘c’

(s, p)
(q, p)

Isomorphism Matches

(s, p)

No-repeated-edge MatchesDescriptionData graphPattern

(q, p) is not a match in no-repeated-edge semantics

Notes

p

r t

q Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
iI) ‘b’ doesn’t FOLLOW or LIKE another PERSON ‘c’
(TODO: “another” implies that ’a’ is not equal to ‘c’)

(q, s)
(q, t) (q, s) (q, t) is not a match in no-repeated-edge semantics

Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
ii) ‘a’ and ‘b’ do not LIKE another common PERSON

(p, q)
(s, q)

(p, q)
(s, q)

(p, s) is not a match as p, s both LIKE r
(s, q) is a match as only q LIKEs p

a

b d

c Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ doesn’t FOLLOW or LIKE anyone else
(TODO: Does “anyone else” imply that ’a’ is not equal to ‘d’)

(p, r, q) (p, r, q)
(p, q, q)

(p, q, r) is not a match as r FOLLOWS s and cannot
be mapped to c
(p, q, q) is a valid match in no-repeated-edge
semantics

s

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ isn’t FOLLOW-ed by anyone else

(q, r, s) (q, r, s)
(q, s, s)

(q, s, r) is not a match as r is FOLLOW-ed by p and
cannot be mapped to c
(q, s, s) is a valid match in no-repeated-edge
semantics

a

b

d

c

p

r s

q

1

p

q s

r

p

q

r

s

p

q

r

s
a

b

c

a

b

c

a
b

c

1

2

3

4

5

Find ‘a, b’ such that
i) ‘b’ FOLLOW-s ‘a’, and
ii) ‘a’ isn’t FOLLOW-ed or LIKE-d by a PERSON, ‘c’

(s, p)
(q, p)

Isomorphism Matches

(s, p)

No-repeated-edge MatchesDescriptionData graphPattern

(q, p) is not a match in no-repeated-edge semantics

Notes

p

r t

q Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
iI) ‘b’ doesn’t FOLLOW or LIKE another PERSON ‘c’
(TODO: “another” implies that ’a’ is not equal to ‘c’)

(q, s)
(q, t) (q, s) (q, t) is not a match in no-repeated-edge semantics

Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
ii) ‘a’ and ‘b’ do not LIKE another common PERSON

(p, q)
(s, q)

(p, q)
(s, q)

(p, s) is not a match as p, s both LIKE r
(s, q) is a match as only q LIKEs p

a

b d

c Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ doesn’t FOLLOW or LIKE anyone else
(TODO: Does “anyone else” imply that ’a’ is not equal to ‘d’)

(p, r, q) (p, r, q)
(p, q, q)

(p, q, r) is not a match as r FOLLOWS s and cannot
be mapped to c
(p, q, q) is a valid match in no-repeated-edge
semantics

s

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ isn’t FOLLOW-ed by anyone else

(q, r, s) (q, r, s)
(q, s, s)

(q, s, r) is not a match as r is FOLLOW-ed by p and
cannot be mapped to c
(q, s, s) is a valid match in no-repeated-edge
semantics

a

b

d

c

p

r s

q

1

p

q s

r

p

q

r

s

p

q

r

s

Find a,b such that
i) b FOLLOWs a, and
ii) a and b do not LIKE another
common PERSON

a b
p q
s q

a b
p q
s q

(p,s) is not a match
since p,s both LIKE r
(s,q) is a match since
only q LIKEs p

Q3

a
b

c

a

b

c

a
b

c

1

2

3

4

5

Find ‘a, b’ such that
i) ‘b’ FOLLOW-s ‘a’, and
ii) ‘a’ isn’t FOLLOW-ed or LIKE-d by a PERSON, ‘c’

(s, p)
(q, p)

Isomorphism Matches

(s, p)

No-repeated-edge MatchesDescriptionData graphPattern

(q, p) is not a match in no-repeated-edge semantics

Notes

p

r t

q Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
iI) ‘b’ doesn’t FOLLOW or LIKE another PERSON ‘c’
(TODO: “another” implies that ’a’ is not equal to ‘c’)

(q, s)
(q, t) (q, s) (q, t) is not a match in no-repeated-edge semantics

Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
ii) ‘a’ and ‘b’ do not LIKE another common PERSON

(p, q)
(s, q)

(p, q)
(s, q)

(p, s) is not a match as p, s both LIKE r
(s, q) is a match as only q LIKEs p

a

b d

c Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ doesn’t FOLLOW or LIKE anyone else
(TODO: Does “anyone else” imply that ’a’ is not equal to ‘d’)

(p, r, q) (p, r, q)
(p, q, q)

(p, q, r) is not a match as r FOLLOWS s and cannot
be mapped to c
(p, q, q) is a valid match in no-repeated-edge
semantics

s

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ isn’t FOLLOW-ed by anyone else

(q, r, s) (q, r, s)
(q, s, s)

(q, s, r) is not a match as r is FOLLOW-ed by p and
cannot be mapped to c
(q, s, s) is a valid match in no-repeated-edge
semantics

a

b

d

c

p

r s

q

1

p

q s

r

p

q

r

s

p

q

r

s
a

b

c

a

b

c

a
b

c

1

2

3

4

5

Find ‘a, b’ such that
i) ‘b’ FOLLOW-s ‘a’, and
ii) ‘a’ isn’t FOLLOW-ed or LIKE-d by a PERSON, ‘c’

(s, p)
(q, p)

Isomorphism Matches

(s, p)

No-repeated-edge MatchesDescriptionData graphPattern

(q, p) is not a match in no-repeated-edge semantics

Notes

p

r t

q Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
iI) ‘b’ doesn’t FOLLOW or LIKE another PERSON ‘c’
(TODO: “another” implies that ’a’ is not equal to ‘c’)

(q, s)
(q, t) (q, s) (q, t) is not a match in no-repeated-edge semantics

Find ‘a, b’ such that
i) ‘b’ FOLLOWs ‘a’, and
ii) ‘a’ and ‘b’ do not LIKE another common PERSON

(p, q)
(s, q)

(p, q)
(s, q)

(p, s) is not a match as p, s both LIKE r
(s, q) is a match as only q LIKEs p

a

b d

c Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ doesn’t FOLLOW or LIKE anyone else
(TODO: Does “anyone else” imply that ’a’ is not equal to ‘d’)

(p, r, q) (p, r, q)
(p, q, q)

(p, q, r) is not a match as r FOLLOWS s and cannot
be mapped to c
(p, q, q) is a valid match in no-repeated-edge
semantics

s

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ share a common influencer ‘a’, and
ii) ‘c’ isn’t FOLLOW-ed by anyone else

(q, r, s) (q, r, s)
(q, s, s)

(q, s, r) is not a match as r is FOLLOW-ed by p and
cannot be mapped to c
(q, s, s) is a valid match in no-repeated-edge
semantics

a

b

d

c

p

r s

q

1

p

q s

r

p

q

r

s

p

q

r

s

Find a,b,c such that
i) b and c FOLLOW/LIKE a, and
ii) c does not FOLLOW/LIKE an-
other PERSON

a b c
p r q

a b c
p q q

(p,q,r) is not a match
since r FOLLOWs s

Q4

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

Find a,b,c such that
i) b and c FOLLOW a, and
ii) b does not FOLLOW d, and
iii) c does not LIKE d

a b c
p q r
p r q
q s r

a b c
p q r
p r q
q s r

(q,r,s) is not a match
since r FOLLOWs t and
s LIKEs t

Q5 a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

Find a,b,c such that
i) a FOLLOWs b and c, and
ii) a does not FOLLOW/LIKE an-
other PERSON

a b c
p q s
p s q
t s r
t r s

a b c
p q s
p s q

(t,s,r) and (t,r,s)
are not matches with
no-repeated-edge se-
mantics since t LIKEs
and FOLLOWs r

Q6

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

Find a,b,c,d such that
i) a and d FOLLOW/LIKE b and
c, and
ii) a and d do not FOLLOW/LIKE
another common PERSON

a b c d
p q r s
p r q s
s q r p
s r q p

a b c d
- - - -

No matches with no-
repeated-edge seman-
tics since p and s LIKE
and FOLLOW q

Q7

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

Find a,b,c such that
i) a and b FOLLOW/LIKE c, and
ii) a and c do not FOLLOW an-
other common PERSON , and
iii) b and c do not LIKE another
common PERSON

a b c
p r s
r p s
q r t
r q t
q p r

a b c
p r s
r p s
q r t
r q t
q p r
q q t

(p,q,r) is not a match
since p and r both
FOLLOW s, and q and r
both LIKE t

Q8

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

a

6

7

8

9

10

Isomorphism Matches No-repeated-edge MatchesDescriptionData graphPattern Notes

Find ’a, b, c’ such that
i) ‘a’ FOLLOWs ‘b’ and ‘c’, and
ii) ‘a’ does not FOLLOW/LIKE another PERSON

(p, q, s), (p, s, q)
(t, s, r), (t, r, s) (p, q, s), (p, s, q)

(t, s, r) and (t, r, s) are not matches with no-
repeated-edge semantics since t LIKEs and FOLLOWs r
(q, r, p) is not a match since q LIKEs s.

(p, q, r, s),
(p, r, q, s),
(s, q, r, p),
(s, r, q, p)

- No matches with no-repeated-edge semantics since p
and s LIKE and FOLLOW q.

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)

(p, r, s), (r, p, s)
(q, r, t), (r, q, t)
(q, q, t)

(p, q, r) is not a match since q, r both LIKE t and
p, r both FOLLOW s.
(q, q, t) is a valid match in no-repeated-edge
semantics.

r

q

s

Find ’a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) the three do not LIKE a common PERSON

(q, p, s), (q, s, p) (q, p, s), (q, s, p)
(p, r, s) is not a match since p, r, s LIKE q.
(q, p, s) is a match since p, s LIKE r but q does
not LIKE r.

a

b d

c

d

c

a

b d

c

Find ‘a, b, c’ such that
i) ‘b’ and ‘c’ FOLLOW ‘a’, and
ii) ‘b’ does not FOLLOW ‘d’, and
iii) ‘c’ does not LIKE ‘d’

(p, q, r), (p, r, q)
(q, s, r)

(p, q, r), (p, r, q)
(q, s, r)

(q, r, s) is not a match since r FOLLOWs t and s
LIKEs t.

q

r
s

t
c

db

b d
e

ca

p
q

t

s

eb

a

r

q t

p s

r

p

2

p

p

sq

r
Find ’a, b, c, d’ such that
i) ‘a’ and ‘d’ FOLLOW/LIKE ‘b’ and ‘c’, and
ii) ‘a’ and ‘d’ don’t have FOLLOW/LIKE another common
PERSON

Find ’a, b, c’ such that
i) ‘a’ and ‘b’ FOLLOW/LIKE ‘c’, and
ii) ‘a’ and ‘c’ do not FOLLOW a common PERSON, and
iii) ‘b’ and ‘c’ do not LIKE a common PERSON

Find a,b,c such that
i) b and c FOLLOW a, and
ii) the three do not LIKE a com-
mon PERSON

a b c
s p r
s r p

a b c
s p r
s r p

(r,p,q) is not a match
since r,p,q LIKE s.
(s,p,r) is a match
since r,p LIKE q but s
does not LIKE q

157

Appendix B

Applications with Subgraph
Morphing

We will walk through the main steps in applying Subgraph Morphing(i.e., S-DAG gen-
eration, pattern selection, and result conversion) on two graph mining use cases: Frequent
Subgraph Mining and Subgraph Counting.

pe pf

pa

pb

pc

pd

pfpa

pb

pc

pd

pe

𝑇ଵ

𝑠 𝑤 𝑠 𝑣

𝑡 𝑡

𝑇ଶ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑤 𝑤

𝑇ଷ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

𝑝

𝑠 𝑢 𝑤 𝑣
𝑡

𝑝

𝑠 𝑤 𝑠 𝑣
𝑡 𝑡

𝑝

𝑠 𝑠 𝑠 𝑣
𝑡 𝑡 𝑡
𝑢 𝑢 𝑢

𝑤
𝑥

𝑡

𝑦

𝑢 𝑧

𝑠 𝑣

Costs

𝑝 𝑝 𝑝 𝑝ௗ 𝑝 𝑝

E.I. 25 15 17 5 6 5
V.I. 4 3 4 2 3 5

Costs

𝑝 𝑝 𝑝 𝑝ௗ 𝑝 𝑝

E.I. 1 3 10 5 5 7
V.I. 20 30 12 10 9 7

𝑇

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

Matches

𝑝
ா 𝑝

ா 𝑝
ா 𝑝ௗ

ா 𝑝
ா 𝑝

75 24 7 37 9 1

𝑐𝑜𝑢𝑛𝑡 𝑝
ா = 75

𝑐𝑜𝑢𝑛𝑡 𝑝
ா = 24

𝑐𝑜𝑢𝑛𝑡 𝑝
ா = 7

𝑐𝑜𝑢𝑛𝑡 𝑝ௗ
ா = 37

𝑐𝑜𝑢𝑛𝑡 𝑝
ா = 9

𝑐𝑜𝑢𝑛𝑡 𝑝 = 1

𝑐𝑜𝑢𝑛𝑡ଵ 𝑝
 = 7

𝑐𝑜𝑢𝑛𝑡ଶ 𝑝
 = 7−9+6×1

𝑐𝑜𝑢𝑛𝑡ଷ 𝑝
 = 4−3×1

(a) S-DAG for pE
a

pe

pf

pa pb

pc pd

pf

pa

pd

pb pc

pe

𝑠

𝑣

𝑡

𝑢

𝑤

𝑤
𝑥

𝑡

𝑦

𝑢 𝑧

𝑠 𝑣

𝑤
𝑥

𝑡

𝑦

𝑢
𝑧

𝑠
𝑣

𝑝

𝑠 𝑢 𝑤 𝑣

𝑡

𝑝

𝑠 𝑤 𝑠 𝑣

𝑡 𝑡

𝑝
ா

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

𝑝

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑇ଵ

𝑠 𝑤 𝑠 𝑣

𝑡 𝑡

𝑇ଶ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑇ଷ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

𝑇ଵ

𝑠 𝑤 𝑠 𝑣

𝑡 𝑡

𝑇ଶ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑇ଷ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

𝑇ଵ

𝑠 𝑤 𝑠 𝑣

𝑡 𝑡

𝑇ଶ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑇ଷ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

(b) Data
graph

pe pf

pa

pb

pc

pd

pfpa

pb

pc

pd

pe

#Matches

𝑝
ா 75

𝑝
ா

24

𝑝
ா

7

𝑝ௗ
ா

37

𝑝
ா 9

𝑝 1

𝑇ଵ

𝑠 𝑤 𝑠 𝑣

𝑡 𝑡

𝑇ଶ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑤 𝑤

𝑇ଷ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

𝑝

𝑠 𝑢 𝑤 𝑣
𝑡

𝑝

𝑠 𝑤 𝑠 𝑣
𝑡 𝑡

𝑝

𝑠 𝑠 𝑠 𝑣
𝑡 𝑡 𝑡
𝑢 𝑢 𝑢

𝑤
𝑥

𝑡

𝑦

𝑢 𝑧

𝑠 𝑣

Costs

𝑝 𝑝 𝑝 𝑝ௗ 𝑝 𝑝

E.I. 25 15 17 5 6 5
V.I. 4 3 4 2 3 5

Costs

𝑝 𝑝 𝑝 𝑝ௗ 𝑝 𝑝

E.I. 1 3 10 5 5 7
V.I. 20 30 12 10 9 7

𝑇

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

Matches

𝑝
ா 𝑝

ா 𝑝
ா 𝑝ௗ

ா 𝑝
ா 𝑝

75 24 7 37 9 1

Matches

𝑝
ா 𝑝

ா 𝑝
ா 𝑝ௗ

ா 𝑝
ா 𝑝

75 24 7 37 9 1

(c) Pattern
costs

pe pf

pa

pb

pc

pd

pfpa

pb

pc

pd

pe

#Matches

𝑝
ா 75

𝑝
ா

24

𝑝
ா

7

𝑝ௗ
ா

37

𝑝
ா 9

𝑝 1

𝑇ଵ

𝑠 𝑤 𝑠 𝑣

𝑡 𝑡

𝑇ଶ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑤 𝑤

𝑇ଷ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

𝑝

𝑠 𝑢 𝑤 𝑣
𝑡

𝑝

𝑠 𝑤 𝑠 𝑣
𝑡 𝑡

𝑝

𝑠 𝑠 𝑠 𝑣
𝑡 𝑡 𝑡
𝑢 𝑢 𝑢

𝑤
𝑥

𝑡

𝑦

𝑢 𝑧

𝑠 𝑣

Costs

𝑝 𝑝 𝑝 𝑝ௗ 𝑝 𝑝

E.I. 25 15 17 5 6 5
V.I. 4 3 4 2 3 5

Costs

𝑝 𝑝 𝑝 𝑝ௗ 𝑝 𝑝

E.I. 1 3 10 5 5 7
V.I. 20 30 12 10 9 7

𝑇

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

Matches

𝑝
ா 𝑝

ா 𝑝
ா 𝑝ௗ

ா 𝑝
ா 𝑝

75 24 7 37 9 1

Matches

𝑝
ா 𝑝

ா 𝑝
ா 𝑝ௗ

ா 𝑝
ா 𝑝

75 24 7 37 9 1

(d) MNI
tables for

alternative
patterns of pa

pe pf

pa

pb

pc

pd

pfpa

pb

pc

pd

pe

#Matches

𝑝
ா 75

𝑝
ா

24

𝑝
ா

7

𝑝ௗ
ா

37

𝑝
ா 9

𝑝 1

𝑇ଵ

𝑠 𝑤 𝑠 𝑣

𝑡 𝑡

𝑇ଶ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑤 𝑤

𝑇ଷ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

𝑝

𝑠 𝑢 𝑤 𝑣
𝑡

𝑝

𝑠 𝑤 𝑠 𝑣
𝑡 𝑡

𝑝

𝑠 𝑠 𝑠 𝑣
𝑡 𝑡 𝑡
𝑢 𝑢 𝑢

𝑤
𝑥

𝑡

𝑦

𝑢 𝑧

𝑠 𝑣

Costs

𝑝 𝑝 𝑝 𝑝ௗ 𝑝 𝑝

E.I. 25 15 17 5 6 5
V.I. 4 3 4 2 3 5

Costs

𝑝 𝑝 𝑝 𝑝ௗ 𝑝 𝑝

E.I. 1 3 10 5 5 7
V.I. 20 30 12 10 9 7

𝑇

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

Matches

𝑝
ா 𝑝

ா 𝑝
ா 𝑝ௗ

ா 𝑝
ா 𝑝

75 24 7 37 9 1

Matches

𝑝
ா 𝑝

ா 𝑝
ா 𝑝ௗ

ா 𝑝
ா 𝑝

75 24 7 37 9 1

(e) Transforming MNI
tables of alternative

patterns to compute MNI
for pa

Figure B.1: Frequent Subgraph Mining (FSM) with Subgraph Reshaping. Key steps in
reshaping are shown for pattern pa.

B.1 Frequent Subgraph Mining

Since FSM explores labeled edge-induced patterns, it can end up matching and computing
MNI for a large number of patterns. To simplify exposition, we consider a single pattern pE

a

(edge-induced 4-star). Figure B.1 summarizes the example.

The S-DAG is constructed by recursively adding the superpatterns of pE
a . The resulting

S-DAG is shown in Figure B.1a. Since we are dealing with labeled patterns, some of the
superpatterns can have identical structures but different labelings. Patterns pb and pc in
the S-DAG show this case.

158

pe pf

pa

pb

pc

pd

pfpa

pb

pc

pd

pe

𝑇ଵ

𝑠 𝑤 𝑠 𝑣

𝑡 𝑡

𝑇ଶ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑤 𝑤

𝑇ଷ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

𝑝

𝑠 𝑢 𝑤 𝑣
𝑡

𝑝

𝑠 𝑤 𝑠 𝑣
𝑡 𝑡

𝑝

𝑠 𝑠 𝑠 𝑣
𝑡 𝑡 𝑡
𝑢 𝑢 𝑢

𝑤
𝑥

𝑡

𝑦

𝑢 𝑧

𝑠 𝑣

Costs

𝑝 𝑝 𝑝 𝑝ௗ 𝑝 𝑝

E.I. 25 15 17 5 6 5
V.I. 4 3 4 2 3 5

Costs

𝑝 𝑝 𝑝 𝑝ௗ 𝑝 𝑝

E.I. 1 3 10 5 5 7
V.I. 20 30 12 10 9 7

𝑇

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

Matches

𝑝
ா 𝑝

ா 𝑝
ா 𝑝ௗ

ா 𝑝
ா 𝑝

75 24 7 37 9 1

𝑐𝑜𝑢𝑛𝑡 𝑝
ா = 75

𝑐𝑜𝑢𝑛𝑡 𝑝
ா = 24

𝑐𝑜𝑢𝑛𝑡 𝑝
ா = 7

𝑐𝑜𝑢𝑛𝑡 𝑝ௗ
ா = 37

𝑐𝑜𝑢𝑛𝑡 𝑝
ா = 9

𝑐𝑜𝑢𝑛𝑡 𝑝 = 1

𝑐𝑜𝑢𝑛𝑡ଵ 𝑝
 = 7

𝑐𝑜𝑢𝑛𝑡ଶ 𝑝
 = 7−9+6×1

𝑐𝑜𝑢𝑛𝑡ଷ 𝑝
 = 4−3×1

(a) S-DAG for pV
a , pV

b

and pV
c

pe pf

pa

pb

pc

pd

pfpa

pb

pc

pd

pe

Matches

𝑝
ா

7

𝑝
ா

9

𝑝 1

Cost

E.I. V.I.

𝑝 25 4

𝑝 15 3

𝑝 17 4

𝑝ௗ 5 2

𝑝 6 3

𝑝 5 5

Cost

E.I. V.I.

𝑝 1 20

𝑝 3 30

𝑝 10 12

𝑝ௗ 5 10

𝑝 5 9

𝑝 7 7

𝑇ଵ
𝑠 𝑤 𝑠 𝑣

𝑡 𝑡

𝑇ଶ
𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑇ଷ
𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

𝑝

𝑠 𝑢 𝑤 𝑣
𝑡

𝑝

𝑠 𝑤 𝑠 𝑣

𝑡 𝑡

𝑝
ா

𝑠 𝑠 𝑠 𝑣
𝑡 𝑡 𝑡
𝑢 𝑢 𝑢

𝑤 𝑤

𝑝
𝑠 𝑠 𝑠 𝑣
𝑡 𝑡 𝑡
𝑢 𝑢 𝑢

𝑤
𝑥

𝑡

𝑦

𝑢 𝑧

𝑠 𝑣

Execution
Planner

Pattern
Transformation

Plans Matching
Engine

Results
Alternative

Patterns

Result
Transformation

Application
(FSM, MC, etc.)

Results

Matching
Engine

Execution
Planner

Patterns ResultsPlans

Application
(FSM, MC, etc.)

Data Graph, Aggregation

Data Graph, Aggregation

(b) Data
graph

pe pf

pa

pb

pc

pd

pfpa

pb

pc

pd

pe

#Matches

𝑝
ா 75

𝑝
ா

24

𝑝
ா

7

𝑝ௗ
ா

37

𝑝
ா 9

𝑝 1

𝑇ଵ

𝑠 𝑤 𝑠 𝑣

𝑡 𝑡

𝑇ଶ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑤 𝑤

𝑇ଷ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

𝑝

𝑠 𝑢 𝑤 𝑣
𝑡

𝑝

𝑠 𝑤 𝑠 𝑣
𝑡 𝑡

𝑝

𝑠 𝑠 𝑠 𝑣
𝑡 𝑡 𝑡
𝑢 𝑢 𝑢

𝑤
𝑥

𝑡

𝑦

𝑢 𝑧

𝑠 𝑣

Costs

𝑝 𝑝 𝑝 𝑝ௗ 𝑝 𝑝

E.I. 25 15 17 5 6 5
V.I. 4 3 4 2 3 5

Costs

𝑝 𝑝 𝑝 𝑝ௗ 𝑝 𝑝

E.I. 1 3 10 5 5 7
V.I. 20 30 12 10 9 7

𝑇

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

Matches

𝑝
ா 𝑝

ா 𝑝
ா 𝑝ௗ

ா 𝑝
ா 𝑝

75 24 7 37 9 1

Matches

𝑝
ா 𝑝

ா 𝑝
ா 𝑝ௗ

ா 𝑝
ா 𝑝

75 24 7 37 9 1

(c) Pattern
costs

pe pf

pa

pb

pc

pd

pfpa

pb

pc

pd

pe

𝑇ଵ

𝑠 𝑤 𝑠 𝑣

𝑡 𝑡

𝑇ଶ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑤 𝑤

𝑇ଷ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

𝑝

𝑠 𝑢 𝑤 𝑣
𝑡

𝑝

𝑠 𝑤 𝑠 𝑣
𝑡 𝑡

𝑝

𝑠 𝑠 𝑠 𝑣
𝑡 𝑡 𝑡
𝑢 𝑢 𝑢

𝑤
𝑥

𝑡

𝑦

𝑢 𝑧

𝑠 𝑣

Costs

𝑝 𝑝 𝑝 𝑝ௗ 𝑝 𝑝

E.I. 25 15 17 5 6 5
V.I. 4 3 4 2 3 5

Costs

𝑝 𝑝 𝑝 𝑝ௗ 𝑝 𝑝

E.I. 1 3 10 5 5 7
V.I. 20 30 12 10 9 7

𝑇

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

Matches

𝑝
ா 𝑝

ா 𝑝
ா 𝑝ௗ

ா 𝑝
ா 𝑝

75 24 7 37 9 1

𝑐𝑜𝑢𝑛𝑡ଵ 𝑝
 = 7

𝑐𝑜𝑢𝑛𝑡ଶ 𝑝
 = 7 − 9 + 6 1 = 4

𝑐𝑜𝑢𝑛𝑡ଷ 𝑝
 = 4 − 3 1 = 1

𝑐𝑜𝑢𝑛𝑡 𝑝
ா = 75

𝑐𝑜𝑢𝑛𝑡 𝑝
ா = 24

𝑐𝑜𝑢𝑛𝑡 𝑝
ா = 7

𝑐𝑜𝑢𝑛𝑡 𝑝ௗ
ா = 37

𝑐𝑜𝑢𝑛𝑡 𝑝
ா = 9

𝑐𝑜𝑢𝑛𝑡 𝑝 = 1

(d) Counts for
alternative patterns

pe pf

pa

pb

pc

pd

pfpa

pb

pc

pd

pe

𝑇ଵ

𝑠 𝑤 𝑠 𝑣

𝑡 𝑡

𝑇ଶ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑤 𝑤

𝑇ଷ

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

𝑝

𝑠 𝑢 𝑤 𝑣
𝑡

𝑝

𝑠 𝑤 𝑠 𝑣
𝑡 𝑡

𝑝

𝑠 𝑠 𝑠 𝑣
𝑡 𝑡 𝑡
𝑢 𝑢 𝑢

𝑤
𝑥

𝑡

𝑦

𝑢 𝑧

𝑠 𝑣

Costs

𝑝 𝑝 𝑝 𝑝ௗ 𝑝 𝑝

E.I. 25 15 17 5 6 5
V.I. 4 3 4 2 3 5

Costs

𝑝 𝑝 𝑝 𝑝ௗ 𝑝 𝑝

E.I. 1 3 10 5 5 7
V.I. 20 30 12 10 9 7

𝑇

𝑠 𝑠 𝑠 𝑣

𝑡 𝑡 𝑡

𝑢 𝑢 𝑢

𝑤 𝑤

Matches

𝑝
ா 𝑝

ா 𝑝
ா 𝑝ௗ

ா 𝑝
ா 𝑝

75 24 7 37 9 1

𝑐𝑜𝑢𝑛𝑡 𝑝
ா = 75

𝑐𝑜𝑢𝑛𝑡 𝑝
ா = 24

𝑐𝑜𝑢𝑛𝑡 𝑝
ா = 7

𝑐𝑜𝑢𝑛𝑡 𝑝ௗ
ா = 37

𝑐𝑜𝑢𝑛𝑡 𝑝
ா = 9

𝑐𝑜𝑢𝑛𝑡 𝑝 = 1

𝑐𝑜𝑢𝑛𝑡ଵ 𝑝
 = 7

𝑐𝑜𝑢𝑛𝑡ଶ 𝑝
 = 7−9+6×1

𝑐𝑜𝑢𝑛𝑡ଷ 𝑝
 = 4−3×1

(e) Transforming
counts to compute

for pE
c

Figure B.2: Subgraph Counting (SC) with Subgraph Reshaping. Key steps in reshaping
shown for input patterns pa, pb and pc.

Costs are estimated for both variants of each pattern in the S-DAG. The pattern costs for
our example are shown in Figure B.1c. Since MNI computations are sensitive to output size,
patterns that are estimated to produce more matches have higher costs. For example, pE

a

is the least constrained pattern in the S-DAG, and hence has the highest cost. Similarly,
the other superpatterns have lower costs for the vertex-induced variants which cause fewer
matches.

Next, the alternative pattern set S is constructed using Algorithm 1. Initially, S = {pE
a }.

Then we iterate over the direct parents of pE
a in the S-DAG, beginning with pV

b . The only
child of pV

b is pE
a with cost 25 while the superpatterns of pE

a (including pV
a) have combined

cost 17. As a result, S is updated to contain {pV
a , pV

b , pV
c , pV

d , pV
e , pf } and all these patterns

have their costs set to 0. The algorithm converges in the next iteration as the alternative
pattern set S does not change.

The matching engine explores the subgraphs that match the patterns in S. The final step
is to compute the MNI table for pE

a from the MNI results for patterns in S. To illustrate
this, consider the sample data graph shown in Figure B.1b. Figure B.1d shows the MNI
tables for the alternative pattern set S. Note that pV

a , pV
c and pV

d do not have any matches
in this example, and hence their MNI tables are empty (not shown). Figure B.1e shows how
the final MNI table is computed from the tables for alternative patterns. Starting with an
empty table, the MNI tables are merged after permuting them using permutation functions.
Consider the MNI table for pV

e . There are two subgraph isomorphisms from pE
a to pV

e , which
lead to two permutations. The first one is the identity permutation (i.e., unchanged) which
results in T1. The second one sends the first column of the MNI table to the second, the
second column to the third, and the third column to the first. Applying this permutation
and merging the resulting table with T1 gives T2. This process continues with the next
alternative pattern pf and results in T3. There are two further isomorphisms into pf , and
one into pV

b , none of which affect the final result, and the process completes with T6.

B.2 Subgraph Counting

In this application, we are interested in counting the subgraphs that match three unlabeled
vertex-induced patterns: a 4-star, a 4-cycle, and a 4-chain. Figure B.2 summarizes the
example where the three patterns are named pa, pb and pc.

Similar to the previous example, S-DAG is constructed by recursively adding superpatterns
of those three input patterns. The resulting S-DAG is shown in Figure B.2a and the esti-

159

mated pattern costs are shown in Figure B.2c. In this case, since the patterns are unlabeled
and the counting aggregation is a constant time operation, the set operation time is the
primary concern. Hence, edge-induced variants of sparse patterns tend to be far cheaper to
compute than their vertex-induced variants which require additional set differences.

Using the S-DAG and the pattern costs, Algorithm 1 computes the alternative pattern set
S. Initially, S starts with {pV

a , pV
b , pV

c }. Then, pV
a is evaluated against its superpatterns

(pE
a , pV

c , pE
d , pE

e , pf). Since pV
a costs 20 while its superpatterns cost 30 combined, pV

a is
not morphed in this step. Similarly, pV

b is not morphed in the next step. However, when
C = {pV

a , pV
b }, the cost of C is 50 while the cost of the combined superpatterns (including

the variants of the patterns in C) is only 33. Hence, S is updated to replace pV
a and pV

b with
pE

a , pE
b , and the other superpatterns, and the cost of these superpatterns is set to 0. Notice

that pV
c is one of the superpatterns of pa and pb. Since the original cost of the superpatterns

of pV
c was greater than the cost of pV

c , it would not have been morphed. However, since
the cost of superpatterns got set to 0, the new cost of superpatterns of pV

c reduces to 10.
Hence, S is updated once again with pE

e instead of pV
e . The final alternative pattern set S

is {pE
a , pE

b , pE
c , pE

d , pE
e , pf }.

After matching the alternative patterns, their results are transformed back to counts for pa,
pb and pc. We discuss this result conversion process next. Figure B.2b shows an example data
graph, and Figure B.2d shows the number of matches in the data graph for the alternative
patterns. The permutation function accounts for the subgraph isomorphisms from the origi-
nal patterns to the alternative patterns. For example, consider pattern pV

c whose counts can
be computed using [SM-V1] in Figure 6.5, i.e., |M(pV

c)| = |M(pE
c)|− |M(pV

e)|−3×|M(pf)|.
However, our alternative set contains the morphed patterns for pV

e , and hence, |M(pV
e)| is

computed as |M(pE
e)| − 6 × |M(pf)|. Therefore, |M(pV

c)| = 7 − 3 − 3 × 1 = 1. Counts for
pV

a and pV
b are computed in a similar manner.

160

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Preliminaries
	Terminology
	Application Semantics
	Examples

	Application-Oblivious Graph Mining Systems
	Understanding Programmable Graph Mining Systems
	Arabesque: General-Purpose Graph Mining
	Fractal: Depth-First Graph Mining
	AutoMine: Pattern-Based Graph Mining

	Consequences of Application-Obliviousness

	Using Patterns to Specify Interesting Subgraphs
	Anti-Edge: Concept and Semantics
	Absence of Edges
	Formal Anti-Edge Semantics

	Anti-Vertex: Concept & Semantics
	Constraints on Match Neighbourhoods
	Formal Anti-Vertex Semantics

	Extended Subgraph Isomorphism
	Conclusion

	Peregrine: Application Semantics in Pattern-Based Systems
	Issues with Graph Mining Systems
	Performance
	Programmability

	Overview of Peregrine
	Peregrine Programming Model
	Peregrine Patterns
	Pattern-Aware Mining Programs in Peregrine

	Pattern-Aware Matching Engine
	Directly Matching A Given Pattern
	Matching Under Extended Subgraph Isomorphism
	Neighbourhood Groups
	Match Groups & Fast Paths

	Peregrine: Pattern-Aware Mining
	Pattern-Aware Processing Model
	Early Pruning for Dynamic Load Balancing
	Early Termination for Existence Queries
	On-the-fly Aggregation
	Implementation Details

	Evaluation
	Experimental Setup
	Comparison with Breadth-First Enumeration
	Comparison with Depth-First Enumeration
	Comparison with Purpose-Built Algorithms
	Mining with Constraints in Peregrine
	Peregrine's Pattern-Aware Runtime
	System Characteristics

	Conclusion

	Subgraph Morphing: Application Semantics in a System-Agnostic Framework
	Performance Analysis
	Graph Mining Applications
	Structure of Patterns
	Structure of Data Graphs
	Graph Mining Systems
	Motivation Summary

	Subgraph Morphing
	Overview
	Intuition & Example
	Semantics
	Significance of Generic Subgraph Morphing
	Proofs of Equivalence

	Generating Alternative Pattern Sets
	Initial Alternative Patterns
	Selecting Efficient Alternative Patterns

	Transforming Results
	Post-Matching Conversion
	On-the-Fly Conversion

	Evaluation
	Morphing for Reducing Set Operation Time
	Morphing for Reducing UDF Overheads
	On-the-Fly Conversion
	Scaling to Large Patterns
	Cost Model Effectiveness

	Conclusion

	OsirisBFT: Application Semantics in Distributed Architecture
	Overview of OsirisBFT
	System Model
	Identifying Application Faults
	Incremental Graph Mining
	Output Failure Model
	Properties for Verification
	Output Verification Model
	Verifiability Beyond Graph Mining

	Verifiable Processing with OsirisBFT
	Normal Execution
	Detecting Failures
	Dynamic Role-Switching

	Safety and Liveness
	Safety
	Liveness

	Evaluation
	Graceful Execution Performance
	Bottleneck Analysis
	Dynamic Role-Switching
	Performance Under Failures

	Conclusion

	Related Work
	General-Purpose Graph Mining Systems
	Approximation
	Graph Querying
	Application-Specific Graph Mining
	Byzantine Fault Tolerance
	Graph Processing Systems

	Conclusion
	Bibliography
	Appendix Anti-Vertex: Generalizations and Further Examples
	Generalizations
	Other Matching Semantics
	Property Graphs

	Anti-Vertex in Graph Query Languages
	Constraining Neighbourhoods in Cypher
	Augmenting Cypher with Anti-Vertex Semantics
	Examples with the Enhanced Cypher Grammars

	Appendix Applications with Subgraph Morphing
	Frequent Subgraph Mining
	Subgraph Counting

