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Abstract

Graph mining is a class of graph analytics whose applications depend on solutions to the
NP-complete subgraph isomorphism problem, as well as related problems like subgraph
counting, to process an input graph’s subgraphs. As a result, graph mining is typically more
computationally expensive than traditional graph processing workloads. Furthermore, ef-
ficient algorithms for graph mining applications have extremely diverse structures. While
different research communities have studied domain-specific graph mining applications for
many years, research on efficiently executing general classes of graph mining problems and
systems for easily programming scalable graph mining applications has emerged only re-
cently. Existing work has focused on adapting graph mining applications to existing generic
systems techniques. Instead, this thesis argues for application-aware design, a philoso-
phy that seeks to leverage the semantics of graph mining applications to build faster, more

scalable, and more fault tolerant systems.

Specifically, this thesis formalizes a model of graph mining applications and applies it in

four scenarios:

(i) extending the traditional definition of subgraph isomorphism with novel graph con-

structs that can express local constraints on subgraphs;

(ii) developing an application-aware graph mining system which leverages well-known but

difficult to integrate techniques for efficiently mining graphs;

(iii) exploiting algebraic properties of subgraphs and aggregations to design a generic
middle-end optimization framework that automatically discovers more efficient alter-

natives to a given set of input graph patterns while preserving application correctness;

(iv) leveraging the gap in cost between computing and verifying the results of subgraph
matching (the NP-complete problem underpinning graph mining) in order to develop
a novel distributed architecture with stronger fault tolerance guarantees and greater

scalability than existing systems.

Keywords: parallel systems; distributed systems; graph mining
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Chapter 1

Introduction

In both industrial and academic settings, the size of available graph data—and the desire to
analyze it—is growing rapidly [183]. Small subgraphs provide insight into the broader struc-
ture of a graph, and thus constitute key components in data mining algorithms on graphs,
across a variety of domains including bioinformatics [220, 156], [158], computer vision [58],
cybersecurity [I12], program analysis [84, [201], and social network analysis [179} [185] 221].
This important class of algorithms is defined in the systems literature as graph mining, and
focuses on structural analysis of graphs through their subgraphs [205].

Graph mining poses two fundamental challenges that makes it interesting to systems
researchers. The first challenge is the cost in both time and space required for mining
large graphs. Analysis of subgraphs may depend on solutions to the NP-complete subgraph
isomorphism problem or related hard problems like subgraph counting, and the number
of subgraphs that must be analyzed scales exponentially with the size of the input graph.
As a result, graph mining is resource intensive, especially compared to traditional graph
processing workloads like PageRank which can be computed in polynomial time [140], to the
point where the 50-kilobyte CiteSeer graph [82] containing only 4,700 edges can take minutes
to mine [205] despite fitting easily within the L1 cache. Thus, scaling graph mining workloads
to real-world graphs with millions or billions of edges requires sophisticated parallel systems.

Second, efficient graph mining algorithms have been developed independently by differ-
ent scientific communities, each applying their own perspectives to solve narrow problems
within their respective domains. The result is that vertical slices of graph mining knowl-
edge are siloed within each field, with large inconsistencies in the structures and methods
of state-of-the-art solutions to graph mining problems. These solutions are rigid, requiring
effort to adapt to different use cases even in related domains, and leave performance on the
table by neglecting techniques learned in other communities.

The response to these challenges has been the rise of programmable graph mining sys-
tems, all designed with the same philosophy. Each system begins with a well-known principle
from past systems research that addresses one or more of the scalability challenges posed

by graph mining, and combines it with a simple unifying model for the diverse set of graph



mining algorithms to develop a parallel graph mining engine. This forms the backend of the
system, which is wrapped with an application programming interface (API) on the frontend
to allow domain experts to implement their own graph mining applications. These systems
are an initial step towards feasibly executing large-scale graph mining workloads, but they
oversimplify graph mining applications in order to fit the interfaces of existing system design
paradigms. This approach is application-oblivious, rendering the user intent opaque to the

system and therefore impossible to leverage in efficiently executing graph mining workloads.

Application-Awareness. This thesis provides an alternative view on designing systems
that centres formal understanding of the applications being executed. Such a perspective
is application-aware, and opens avenues for optimizing execution based on application-level
insights. In particular, the knowledge silos of domain-specific graph mining communities
can be accessed, allowing the many techniques and optimizations to be applied, only given
a baseline understanding of application semantics. In other words, the ability of a general-
purpose graph mining system to optimize its execution is contingent on a sufficiently so-
phisticated unifying model for graph mining applications.

The thesis begins by formulating such a model of graph mining applications in Sec-
tion formally defining graph mining applications as an aggregation @ over the subgraphs
S of a data graph g. The formalisms surrounding each component of this model are then an-
alyzed in order to design novel application-aware systems and frameworks that aggressively
optimize their execution and provide greater efficiency, scalability, and fault tolerance than
is possible for an application-oblivious system. This is possible due to the transparency af-
forded by the formal model of graph mining applications. Application-aware design enables
integrating seemingly incompatible techniques from different communities, generalizing lim-
ited techniques to broader and broader classes of application, and developing brand new
constructs for reasoning about graph mining.

Specifically, this thesis applies the formal model in four ways:

(i) following observations on the difficulty specifying S in existing systems, a pattern-
based view of graph mining emerges based on the novel concept of extended sub-
graph isomorphism, allowing local constraints on subgraphs to be expressed with

well-defined, and transparent semantics (Chapter |4));

(ii) this pattern-based view motivates an application-aware graph mining system which
leverages well-known but difficult to integrate techniques for efficiently obtaining S as

matches of graph patterns in g (Chapter ;

(iii) algebraic properties of subgraphs and user-defined aggregations are used to design
a generic middle-end optimization framework that automatically discovers more effi-
cient alternatives to a given set of input graph patterns while preserving application

correctness (Chapter @ ;



(iv) leveraging the gap in cost between computing and verifying the results of subgraph
matching (the NP-complete problem underpinning graph mining) in order to develop
a novel distributed architecture with stronger fault tolerance guarantees and greater

scalability than existing systems (Chapter [7)).

Next is a more detailed overview of these four instances of application-aware design.

Pattern Semantics. In instance (i), the thesis formalizes the semantics of local struc-
tural filters on subgraphs, as these are implemented in existing systems through opaque
user-defined functions (UDFs). A pattern-based approach is adopted, where the desired
subgraphs S can be thought of as matches of a set of pattern graphs in g. Since the existing
definition of matches (i.e., subgraph isomorphism) can only express the existence of edges,
and therefore does not obviate UDFs, we develop novel graph constructs anti-edge and anti-
verter with formal semantics that, when added to patterns, enable expression of nuanced
constraints on the local structure of matches. These constructs make structural filters trans-
parent to underlying runtimes, unify the dichotomy between edge-based and vertex-based
exploration perpetuated by existing systems, integrate with existing techniques, and are

declarative (i.e., they do not rely on implementation details of the underlying system).

Pattern-Aware Graph Mining. In instance (ii), the thesis develops PEREGRINE, a
shared-memory general-purpose graph mining system that can be programmed with a mix-
ture of pattern semantics and user-defined functions. PEREGRINE leverages pattern seman-
tics to integrate and generalize a large suite of previously incompatible application-specific
techniques, delivering up to 737x faster execution time than the state-of-the-art distributed
graph mining system [77] with 8x fewer hardware resources. Implementing the state-of-the-
art shared-memory application-oblivious system design [146] on top of the PEREGRINE run-
time showed that the domain-specific techniques enabled by application-awareness account

for up to 42x speedup in execution time.

Generic Query Optimization. In instance (iii), we analyzed the performance of graph
mining systems and developed SUBGRAPH MORPHING in response, a middle-end query opti-
mization framework that integrates with any pattern-based graph mining engine. SUBGRAPH
MORPHING recognizes equivalent programs using the semantics of subgraph isomorphisms
and traverses the space of possible programs to select an efficient one, with no changes
to the system runtime and one additional application specification required from the user.
There is no single bottleneck in any given graph mining system across different workloads,
and performance characteristics vary wildly from application to application, so efficiency
of a given program is determined using the underlying system’s own internal optimizer.
SUBGRAPH MORPHING was integrated with 4 different systems, and improved execution

time by up to 34x when wrapping existing engines without changes to system code.



Byzantine Fault Tolerance Without Task Replication. In instance (iv), we de-
veloped OSIRISBFT, a new distributed architecture that tolerates Byzantine faults (the
most difficult failure model, since faulty machines can act arbitrarily or even maliciously)
with stronger resiliency guarantees and greater performance and scalability than the state-
of-the-art architecture for distributed graph mining. Traditional approaches to Byzantine
fault tolerance replicate expensive graph mining tasks to ensure they are executed correctly,
but OSIRISBF'T uses pattern semantics to guarantee the results of tasks without replication
through lightweight verification. Compared to the traditional architecture, the application-
aware design yields up to 4x higher mining throughput while tolerating 2x more failures.
Furthermore, we demonstrate that the OsSIRISBFT architecture is applicable beyond graph
mining to other workloads such as robot motion planning and video analysis, with similar

improvements in performance and fault tolerance.

Contributions. This thesis uses application-aware design to develop novel systems, frame-
works, and techniques for more efficient, scalable, and fault tolerant graph mining, and in
the process generalizes and repurposes graph mining knowledge across domains and appli-

cations. The key contributions include:

1. Introduction of pattern-awareness as an application-aware design philosophy for graph
mining systems, a key driver in the performance of recent work in graph mining
systems [53] 50}, 202 47, [46] (Chapter 4| and Chapter [5)).

2. Integration of previously incompatible application-specific techniques like symmetry
breaking and graph orientation (i.e., data vertex reordering). The obstacles to inte-
grating these techniques were resolved due to the formal semantics of extended sub-
graph isomorphism. These and other pattern-aware techniques contribute to orders-

of-magnitude execution time speedups over pattern-oblivious systems (Chapter [5)).

3. The first system-agnostic query optimization framework, SUBGRAPH MORPHING, which
enabled previously intractable workloads (e.g., 4-motif counting on billion-scale graphs)
without requiring changes to system code. SUBGRAPH MORPHING accomplishes this
by generalizing combinatorial identities reserved for counting subgraphs to a broad

class of user-defined aggregations (Chapter @

4. A Byzantine fault tolerant distributed architecture OSIRISBEFT for processing task-
parallel applications (not only graph mining applications) on data streams that lever-
ages application semantics to avoid replicating expensive computations. Executing in
a fixed-size cluster, OSIRISBFT can tolerate more faults without sacrificing safety
than any other existing approach, while making fewer assumptions on the nature of

failures in the cluster, and empirically demonstrating higher throughput (Chapter [7)).



Roadmap. The remainder of the thesis is structured as follows. Next, Chapter [2| defines
the terminology used in this paper and defines a formal model for graph mining applications.
Application-oblivious graph mining systems are then analyzed according to this model in
Chapter [3] What follows are the four instances of application-aware design. Chapter [4 devel-
ops a model for understanding the structural aspects of graph mining applications through
the anti-edge and anti-vertex constructs alongside extended subgraph isomorphism. Chap-
ter [§] develops a novel parallel and programmable graph mining system, PEREGRINE, that
leverages extended subgraph isomorphism and sophisticated pattern analysis techniques
to efficiently and scalably execute graph mining applications. Chapter [6] carries forward
the pattern-centric approach to reason about substructural similarities between subgraphs,
giving rise to the SUBGRAPH MORPHING framework which automatically optimizes pattern-
based graph mining programs. Finally, OSIRISBF T is presented in Chapter[7] OsIRISBFT’s
distributed processing architecture exploits the algorithms at play in pattern-based graph
mining systems to tolerate more faults with fewer assumptions than traditional approaches
to Byzantine fault tolerance, all while delivering higher throughput. The thesis closes with
a brief literature review in Chapter [8] covering related work from the systems, databases,

and algorithms communities followed by concluding remarks in Chapter [9]



Chapter 2

Preliminaries

This chapter summarizes the prerequisite knowledge for understanding graph mining works
and clarifies the terminology used throughout this thesis (summarized in Table [2.1)).

2.1 Terminology

Graphs. Given a graph g, we denote its vertices by V' (g) and its edges by F(g). Vertices
and edges are uniquely identified by integer ids, and may also have labels, given by functions
Lgy(v) for v € V(g) and Wy(e) for e € E(g). The neighbourhood or adjacency list of a vertex
v € V(g) is written adj(v) = {(u,v) € E(g9)} U{(v,u) € E(g)}. A clique is a graph where
every pair of vertices is adjacent. For ease of exposition, this thesis uses simple, undirected
graphs unless specified otherwise, though most techniques presented apply naturally to more
general graph models. When the generalization for a technique is not trivial, it is described
in the appendices.

A subgraph of a graph g is a graph s such that F(s) C E(g) (and thus, V(s) C V(g)).
Unless specified otherwise, the term term subgraph in this thesis refers to a connected
subgraph, consisting of a single connected component. A subgraph s is vertez-induced if it

contains all edges between its vertices, i.e., it satisfies
Yu,v € V(s), (u,v) € E(9) = (u,v) € E(s).

Otherwise, s is edge-induced. The works covered focus on simple, undirected, vertex-labeled
graphs, though their contributions apply to directed, edge-labeled, multigraphs with small
adjustments. For instance, the anti-vertex presented in Chapter [4]is generalized from simple
undirected graphs to the rich property graph model in Appendix

Subgraph Isomorphisms. Central to many graph mining applications is the subgraph

isomorphism problem. Given a data graph g and a pattern graph p, a subgraph isomorphism
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Figure 2.1: The 6 unique automorphisms of a triangle graph, obtained through the identity
transformation, clockwise or counter-clockwise rotation, or reflection around a vertex.

is an injective function ¢ : V(p) — V(g) satisfying the following:

V(u,v) € E(p), (d(u), ¢(v)) € E(g),
Vo € V(p), Lp(v) = Ly(¢(v)),
V(u,v) € E(p), Wp((u,v)) = Wy((¢(u), 6(v)))-

The range of a subgraph isomorphism describes a subgraph of g that has the same struc-
ture as p (i.e., the subgraph is isomorphic to p). For convenience, this subgraph is sometimes
written ¢(p). The literature gives many names to ¢(p), including match, embedding, and
even simply subgraph. Some works apply the same terms to the subgraph isomorphism map-
ping instead. This thesis refers to ¢(p) as a match, and sometimes abuses the term to also
mean the isomorphism (e.g., “computing matches of a pattern p in graph ¢” instead of
“computing subgraph isomorphisms of p into g”).

This abuse includes referring to vertices in a match using vertices in its domain. If m
is a match of p in g, then for a vertex v € V(p), m(v) € V(g) is the vertex mapped by v
in the subgraph isomorphism of m. It is also often convenient to write a subset of V(m)
in function notation: if V' C V(p), then m(V’) C V(m) C V(g) is the set of vertices the
subgraph isomorphism of m maps to the vertices in V.

The subgraph isomorphism problem is intractable in general, since for arbitrary inputs
there are O(n*) possible matches, where k = |V (p)| and n = |V (g)|. This thesis refers to
the set of matches for a pattern p in a graph g as £(g,p).

Graph Isomorphisms and Automorphisms. When |V (g)| = |V(p)|, ¢ is a graph
isomorphism. Computing graph isomorphisms is thought to be computationally simpler
than subgraph isomorphism [I89], and in practice it is efficient for small graphs [148, [117].

In the special case g = p, ¢ is called an automorphism. Automorphisms reassign the ids
of vertices and edges in a graph without changing the structure or labeling. Figure [2.1] shows
the 6 automorphisms of a triangle graph, corresponding to each of the ways the triangle
can be rotated or flipped to obtain a new assignment of ids. Intuitively, automorphisms are
different “views” of a graph. The set of automorphisms for a graph g is an equivalence class

called the automorphism group of g.



Definition Common Terms
Large graph being mined; one of its | data graph, input graph, graph; data edge/ver-

edges/vertices tex

Graph in the domain of a subgraph iso- | pattern, query graph, template, subgraph, motif,
morphism; one of its edges/vertices graphlet; pattern edge/vertex

Subgraph described by the range of a | match, embedding, instance, subgraph, pattern,
subgraph isomorphism motif, graphlet

Subgraph that contains all edges be- | vertex-induced, induced
tween its vertices
Subgraph that may not contain all edges | edge-induced, non-induced
between its vertices

Measure of frequency in FSM frequency, support

Column in an MNT table MNI column, domain

Graph with k vertices where every pair | k-clique, K, complete graph on k vertices
of vertices is adjacent
Set of all unique graphs (up to isomor- | k-motifs
phism) with k vertices

Table 2.1: Terminology used in the literature.
This thesis uses the bolded terms.

This thesis abuses the term automorphism to refer both to a mapping ¢ as well as
to a representative of the automorphism group. The pattern of a subgraph s is a canoni-
cal representative p for the automorphism group of a graph that is isomorphic to s. Two
matches/subgraphs are duplicates if they are automorphic. Similarly, a set of unique match-
es/subgraphs is one where no pair of matches/subgraphs are automorphic. The set of all

unique matches for a pattern p in a graph g is written £*(g, p).

2.2 Application Semantics

In this section we formalize a model for the semantics of graph mining applications consid-

ered in this thesis, and use it to describe several common existing workloads.

Definition 2.2.1 (Graph Mining Application Semantics). Let G be the set of all finite
graphs. This thesis defines a graph mining application on a graph g € G as an aggregation
over a set of subgraphs S C S;. Let R be an application-specific set representing graph
mining results. Then, an aggregation is a commutative monoidlﬂ (R,®), where R is the
set of aggregation values, and @ is called the aggregation operator. ~ We model graph

mining applications as functions App : G — R which take a graph as input and perform an

fA commutative monoid (R, ®) (abbreviated as simply R when @ is apparent from context) consists of
a set R with an associative and commutative binary operator @& : R X R — R, such that there exists an
identity element e € R for which e ® v = v for all v € R. E.g., non-negative integers form a commutative
monoid under addition.



aggregation over some subset of its subgraphs. This can be expressed formally as

Vg € G,3S C Sy, Applg) = P v(s) (2.1)

seSs

where v : S — R is an application-specific function mapping subgraphs to aggregation

values.

This model captures the core workload in graph mining applications which dominates
execution time: exploring and aggregating subgraphs [205]. The set S is a set of interesting
subgraphs the application wishes to process. The function v extracts valuable information
from each subgraph, such as its pattern or its vertex/edge ids, or simply yields the subgraph
unchanged. The aggregation operator combines each subgraph-specific value into one value
that can be analyzed by users. On the other hand, the model does not prescribe how
an application should be implemented, or how a graph mining system should enable a
given application. Eq. 2.I] also purposely excludes computations performed on the input
graph before mining, as well as additional analysis of the aggregation values after mining.
In this manner, important graph mining workloads can be represented concisely without
generalizing their semantics to the point of superficiality or overspecifying their semantics

by assuming implementation details.

2.2.1 Examples

Consider the following examples of graph mining applications whose semantics are modeled

by Eg.

Example 2.2.1 (Subgraph Matching). In the subgraph matching application, the user is
interested in all matches for a target pattern p in data graph g. This application is a pure
example of the subgraph isomorphism problem, and there are many works focused solely
on efficient subgraph matching in various contexts [123] 172, 33 [102], 10T}, 190, 18| 125
175|191, 134]. Most commonly, the user is interested in edge-induced matches, but some
works consider vertex-induced matches. Subgraph matching is also called pattern matching,
subgraph querying, subgraph listing, or subgraph enumeration in the literature.

Here, S is the set of matches for the target pattern p, R is the set of all subsets of S,, v
is the identity function returning each match unchanged, and & is the set union operation.
If the set of matches is not necessary to maintain, e.g., the application simply performs
some computation on each match that does not produce any value, then v can return an
empty set for every subgraph. Another common variation on subgraph matching is subgraph
counting, where only the number of matches is required. In subgraph counting, R is the
set of non-negative integers, ¥ maps each match to the integer 1, and ® simply performs
addition.



Key-Value Aggregations. Example shows simple aggregations that produce a
single value or set. Other applications produce a map of results, represented as key-value
aggregations by setting R = P({(k,r) : k € K,r € R})ﬂ where K is an arbitrary set but
the set of values R has its own binary operator @ such that (R, ®pg) is a commutative
monoid. Then the aggregation operator @ sums values A, B € R with matching keys using
DPr:

A®B={(k,ra®rrB): (k,ra) € AN (k,rp) € B}
U{(k,r) € A:A (k,7") € B}
U{(k,r) € B:A(k,7") € A}.

Keys present in both A and B have their values summed using @ g, while keys only present
in one are unchanged. & and &g are distinguished as the outer and inner aggregation

operators, respectively. Such aggregations are used in the next three examples.

Example 2.2.2 (k-Motif Counting). In k-motif counting, the user is interested in how
many matches in g correspond to each pattern with k vertices. This application is especially
important in bioinformatics [156} [220], and has been extensively studied in that commu-
nity [93| 1411 168, 9, 173, 139) 24) 196, [88]. Some works materialize the matches for the user
as well as counting them, some use combinatorial identities to efficiently count matches
without allowing the user to access them, and others only approximate the distribution.
Motif is a synonym for pattern, and is also sometimes referred to as a graphlet.

In the k-motif counting application, S is the set of all unique subgraphs of size k£ and
R is the powerset P({(p,n) : p is a k-motif,n € Z="}), with addition as the inner binary
operator and @ defined as above. Every subgraph s is mapped to (p, 1) by v, where p is the

pattern of s.

Example 2.2.3 (Frequent Subgraph Mining). Frequent subgraph mining (FSM) seeks to
detect which patterns occur frequently in a data graph g (“subgraph” in FSM actually
refers to patterns, not matches or subgraphs of g) [82]. Classic works on FSM considered
the context of a graph database containing many graphs, where frequency referred to the
number of graphs in the database that contained a match for a given pattern. More recently,
and for the purposes of graph mining systems, FSM is executed on one large graph, where
frequency is not measured by the number of matches [82, 203] [182] 12], 104, 237, 31 2],
because match counts are not anti-monotonic.. Anti-monotonicity means that if a pattern
of size k is infrequent, no pattern of size [ > k will be frequent, and is essential to efficiently
compute FSM, since it allows pruning all subgraphs that contain a match for a smaller

infrequent pattern from the search space.

TFor a set A, P(A) = {A’ C A} is the powerset of A, i.e., the set of all subsets of A. Note that the empty
set is a subset of any set.
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The most commonly used frequency measure is Minimum Node Image (MNI) [37]. To
compute MNI for a pattern, a table is constructed where each column corresponds to a
pattern vertex and contains the set of all data vertices that correspond to it in some match.
MNT is the size of the smallest column in this table.

Eq. models FSM on a graph ¢ as follows. For a k-vertex pattern p, the set of MNI
tables can be formalized as R = {(V1,Va,..., Vi) : V; € V(g)}. Two elements in R are

combined by taking the union of corresponding columns:
(VI,...,Vk) Dr (‘/1/7’Vk/) = (V1UV1’,...,V;€UV,€’).

Then finally the result set is R = P((p,r) : pisa graph A 3i € N,r € R;). S is the set of
subgraphs that are isomorphic to a frequent pattern, and v maps a subgraph s to the pair
(p,r) where p is the pattern of s and r is the MNI table where each vertex in s forms its

own column.

Other common workloads associate data vertices or edges with structural characteristics

such as match counts [108].

Example 2.2.4 (Local k-Clique Counting). Local k-clique counting records the number
of k-cliques each vertex in a data graph g participates in. In Eq. this is formalized by
setting R = P({(v,c) : v € V(g) A c € N}), with addition as the inner binary operator. The
relevant subgraphs are S = {s € S, : s is a k-clique}, which can be more concisely stated

as S = £*(g, k-clique pattern).

These formalisms for graph mining applications enable critical discussion of existing

system designs in the following chapter.
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Chapter 3

Application-Oblivious Graph
Mining Systems

This chapter contextualizes the work of this thesis within the graph mining systems litera-

ture.

3.1 Understanding Programmable Graph Mining Systems

Existing programmable graph mining systems were designed by combining well-known sys-
tems ideas (e.g., concurrent disk-backed task queues in G-Miner [45], relational joins [4] in
RStream [219]), or even entire systems (e.g., Giraph [23] in Arabesque [205], Spark [230]
in Fractal [77]), and building a graph mining abstraction to match. These graph mining
abstractions are typically thin wrappers around the processing model required by the un-
derlying systems techniques. For instance, Arabesque explores in breadth-first fashion by
extending one subgraph at a time due to its bulk-synchronous parallel [211] processing
model inherited from Giraph, which in turn inherited it from MapReduce [72].

This section sketches a high-level overview of the foundations of the graph mining sys-
tems literature. Three systems are discussed: the first programmable graph mining system

Arabesque [205], as well as the most recent two systems Fractal [77] and AutoMine [146].

3.1.1 Arabesque: General-Purpose Graph Mining

The first system to tackle programmable graph mining was Arabesque [205], which iden-
tified that existing graph processing systems are ill-suited to operations on patterns and
their matches. Specifically, there are two major obstacles to solving graph mining problems
on a traditional graph processing system: (a) graph processing systems typically expose
APIs that operate on individual vertices or edges at a time (i.e., users write small functions
which are applied to each vertex/edge over several iterations), while graph mining applica-
tions operate on matches, leading to awkward and buggy user programs that must build up

matches one vertex/edge at a time in ad-hoc fashion; and (b) since graph processing sys-
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1 bool filter(match e) {

2 if (e.numVertices () == 3)

3 return e.numEdges () == 3;

4 else

5 return e.numVertices() < 3;

6 X

7 void process(match e) {

8 if (e.numVertices () == 3)

9 map (pattern(e), 1); 1 int count = 0;

10 } 2 void vertexMap(vertex u) {
11 pair reduce(pattern key, int vals[]) { 3 for (v in u.nbrs()) {

12 return pair(p, sum(vals)); 4 vertex x[] = u.nbrs() N v.nbrs();
13 } 5 count += x.size();

14 void aggProcess(pattern key, int val) { 6 }

15 print (key, val); 7}

16 } 8 count /= 3;

(a) Filter-Process (b) Think Like A Vertex

Figure 3.1: Triangle Counting programs in the Filter-Process [205] and TLV [140] program-
ming models.

tems are optimized for such vertex-centric and edge-centric programs, they cannot handle
the combinatorial explosion of intermediate state when exploring subgraphs of a graph. In

this section, we examine Arabesque’s design in detail and discuss its drawbacks.

Programming Model

Arabesque’s answer to the first obstacle is the “Think Like an Embedding” (TLE) paradigm
(inspired by “Think Like a Vertex” (TLV) in graph processing [140]) and associated filter-
process model, wherein the system iteratively generates larger matches and invokes user-
defined filter and process functions on them. Matches that pass the filter are processed
and then extended to larger matches. The program either operates on vertex-induced or
edge-induced matches. The set of initial matches is simply all vertices in the graph (or
edges, if edge-induced matches are desired). These user-defined functions (UDFs) also have
access to generic map-reduce style aggregations to support global computations, along with
filtering and processing callbacks to operate on aggregated data. Arabesque guarantees that
matches passed to each function are unique (i.e., no automorphisms of the same match are
processed). This programming model makes it simple to implement common graph mining

benchmarks in a few simple callbacks.

Ezxample 3.1.1. Figure shows how Triangle Counting is implemented in both Arabesque
and a TLV graph processing system. In Arabesque’s filter-process program (Figure ,
all matches that have greater than 3 vertices are filtered, as are those which have 3 vertices
but 2 edges. Thus leaving triangles (i.e., 3 vertices and 3 edges), as well as patterns with
2 or 1 vertices (i.e., single edges and single vertices) that can extend later into triangles.

If the user becomes interested in patterns with 4 vertices that contain a triangle, all they
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Figure 3.2: Triangle counting in a small graph using the breadth-first processing model from
Arabesque [205]. Dashed lines represent barriers between supersteps, where matches from
the previous superstep are filtered, processed, and extended into the next superstep.

must do is change Line [5] to accept matches with less than 5 vertices, instead of those with
less than 3.

By contrast, in a TLV program (Figure , the user-defined function must directly
explore the neighbourhood of each vertex and compute an intersection to find triangles.
Each triangle match will be encountered from each of its vertices, so the user must divide
the final count by 3. Hence, although the TLV program is shorter, it arguably requires more
expertise to implement, and must be changed completely if the user is interested in patterns

other than a triangle, since simply dividing the count would no longer give correct results.

Processing Model

The second obstacle (handling a combinatorial explosion of matches) is harder to overcome.
Arabesque is built on top of a TLV graph processing system, Giraph [23], which adopts
a bulk synchronous parallel [211] processing model (BSP). The computation proceeds one
superstep at a time, where a user-defined vertexMap function is applied to every verter in
the data graph (or an edgeMap function is applied to every edge) before proceeding.
Arabesque builds on top of this abstraction, and uses the vertexMap or edgeMap func-
tions to iteratively generate larger vertex-induced or edge-induced matches, respectively,
and passes them to the filter-process functions. At superstep k, Arabesque filters invalid
matches from superstep k and processes the valid matches. Then, for each valid match,
all canonical (i.e., unique) extensions of the match with a vertex (or edge) are computed
for superstep k + 1. The computation terminates when there are no more matches. This

processing model is known as breadth-first exploration in the graph mining literature.

Ezample 3.1.2. Figure|3.2] shows how triangle counting on a small graph would be executed
in Arabesque, using vertex-induced matches. The set of matches at superstep 1 consists of
all vertices. These all pass the filter, and are extended into the set of all edges. These also
pass the filter, resulting in three size 3 matches. Two matches are for a triangle pattern,

while the remaining one is for a wedge pattern. The latter fails the filter because it only
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has 2 edges (Line (3| in Figure [3.1al). Hence, the two triangles are counted and extended. At

superstep 4, all matches fail the filter, and hence in superstep 5 the computation ends.

Discussion

There are four major challenges arising from the design of Arabesque’s programming and
processing models. Subsequent general-purpose graph mining systems attempt to address
some or all of these topics, and several application-specific solutions have already addressed

them.

Challenge: User-Friendliness. While the filter-process model makes expressing aggre-
gations of matches easier compared to the TLV model, it is far from declarative. The main
difficulty in writing user programs for the filter-process model is that the user must consider
how the system will arrive at the final set of matches. In our triangle counting example,
despite only being interested in size 3 matches, both the filter and process functions must
also consider what to do when the input match is smaller than size 3, since Arabesque
invokes these functions at every iteration. This leads to the clunky logic in the example’s
filter function, where size 3 matches must be checked to ensure they are triangles, size 1

and 2 matches must be passed through, and size 4 matches must be filtered out.

Challenge: Wasted Computation. Another consequence of the filter-process model is
that the system is fundamentally unaware of which matches are interesting until after they
have been explored. Despite only wanting to process triangles in our example, the process
function is invoked on every vertex and every edge as well, only for the if-condition to fail.
Furthermore, computing the pattern of a match is an expensive graph isomorphism check,

even if the user knows explicitly which patterns they are interested in mining.

Challenge: State Explosion. Arabesque struggles with the combinatorial explosion prob-
lem in graph mining, which manifests as a memory bottleneck in the breadth-first explo-
ration model since all matches at the current superstep must be stored to be extended at
the next superstep. For instance, in the motif counting application, the Orkut graph [225]
yields 123 trillion matches at superstep 4, despite the graph containing only 117 million
edges.

To cope with such massive state, Arabesque developed the Over-approximating DAG
(ODAG), a data structure for aggressively compressing matches, trading space for time.
While the ODAG offers impressive compression factors (albeit, without any bounds or
guarantees), it suffers from heavy decompression costs that actually consume the majority
of CPU utilization in some applications.

Challenge: Load Imbalance. Breadth-first exploration leads to load imbalances between
workers. Each worker holds a set of matches which are extended every superstep. However,
due to the skewed nature of real-world graphs [49], some matches will contain high-degree

vertices and result in far more extensions than most matches which will comprise mainly
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low-degree vertices. Hence, workers beginning with matches containing high-degree vertices
will have far more work to do than workers with low-degree matches.

Arabesque attempts to address this issue by gathering all matches at a leader node and
redistributing matches fairly across workers. However, this load balancing scheme is itself
a massive bottleneck, as all workers must synchronize after every superstep, contend for
bandwidth to send matches to the leader, and spend long amounts of time compressing and

decompressing matches into ODAGs.

Previous Solutions. It is important to note that these challenges were already solved by
several application-specific solutions which did not need to support a general programming
or processing model. For example, GraMi [82], a framework for frequent subgraph mining
(FSM), solved the problems of wasted computation and state explosion in the case of FSM.
It aggressively reuses previous results to prune its search space, guides its exploration using
information about which patterns were previously frequent, and only exploring a pattern’s
matches until the pattern can be guaranteed to be frequent. As a result, it explores a fraction
of the matches that Arabesque does. Similarly, there have been several works regarding
efficient motif counting [9 141} 108, [I73] which do not suffer from state explosion, load
imbalance, or wasted per-match computations because they use combinatorial identities to

quickly count matches without having to materialize them.

3.1.2 Fractal: Depth-First Graph Mining

Fractal moves away from the bulk synchronous parallel Giraph [23] backend used by Arabesque
to a more general Spark backend in order to overcome the state explosion problem in
Arabesque’s breadth-first exploration. Using Spark on the backend, Fractal is able to ex-
plore subgraphs in a depth-first manner, reducing the per-thread memory footprint for
t threads from O(|S|/t) in breadth-first exploration to just O(1) by having each thread
fully explore one subgraph at a time before moving on to another. In conjunction, Fractal
develops the fractoid model for defining graph traversals.

Finally, systems emerged that were able to tackle the state explosion problem in memory
with a small algorithmic tweak: abandoning breadth-first exploration and exploring in depth-
first manner instead. In a depth-first exploration, each thread only generates one match at a
time, extending it as far as possible before backtracking to a different match, thus completely
eliminating the state explosion problem. At the same time, other aspects of the system, like
user-friendliness, generality or load balancing are not necessarily sacrificed by this choice.

Fractal [77] is a distributed general-purpose graph mining system from the same group
as Arabesque, and makes improvements in addressing all but one of the main challenges of
graph mining. Aside from the switch from breadth-first to depth-first, Fractal’s processing
model is similar to Arabesque. Exploration begins from individual edges or vertices, which
are iteratively extended with either edges or vertices. Load imbalances are rectified through

work-stealing: workers can steal a portion of the edges or vertices that extend a given match.
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1 let T = FREQUENCY_THRESHOLD;

2 // using edge fractoid

3 let computation = g.efractoid()

4 .expand (1) // eztend by 1 edge

5 .aggregate(s -> map(s.pattern(),
1 let computation = g.vfractoid() 6 mniTable(s)),
2 .expand (3) // extend by 3 wertices 7 (a, b) -> merge(a, b))
3 .filter(s -> s.nEdges == 3) 8 .aggFilter (
4 .aggregate(s -> map("", 1), 9 (emb, key, val) -> val > T)
5 (n1, n2) -> a + b); 10 .explore(k); // loop operator

(a) Triangle Counting (b) FSM

Figure 3.3: Triangle Counting and FSM applications in Fractal [77].

Fractal has a programming model augments filter-process with the concept of fractoids,
which represent different methods for iteratively extending matches. Where Arabesque sup-
ported vertex-induced or edge-induced matches, and explored one vertex at a time or one
edge at a time based on the user’s choice, Fractal explicitly represents exploration strategies
in terms of vertex fractoids, edge fractoids, and pattern fractoids. Users choose which type
of fractoid to use, and chain together a series of primitives that defines the computation.
Then, Fractal programs can be conceptually represented by a string corresponding to this
chain of primitives (E for “extend”, F for “filter”, and A for “aggregate”). For example, Fig-
ure [3.3]shows how triangle counting and FSM are implemented in Fractal. Triangle counting
will be executed as “EEEFA”; three extensions, a filter, then an aggregation.

FSM is more complicated. Because FSM must aggregate all matches of a given size after
every extension to take advantage of anti-monotonicity, it seems fundamentally incompati-
ble with depth-first exploration. Fractal resolves this tension by restarting exploration after
an aggregation. Aggregation values are cached across these restarts, but matches them-
selves are lost and recomputed in depth-first manner each time. This is represented in the
program string by a dash. So FSM until maximum size 4 is executed as “EA-EFEA-EEFEA-
EEEFEA”. Edge matches are extended by one edge to obtain matches with 2 edges, then
aggregated. All matches are lost, so next, edge matches are extended by two edges to ob-
tain matches with 3 edges, but after the first extension matches are filtered based on the
previous iteration’s aggregation. This continues until the maximum size is reached or no
matches can be extended.

While vertex and edge fractoids correspond easily with vertex and edge exploration in
Arabesque, the pattern fractoid represents a new form of exploration. A pattern fractoid
requires a target pattern as input, and extends matches by one vertex at a time, but
automatically filters matches that cannot eventually result in a match for the target pattern.
This fractoid is used exclusively for the pattern matching application in Fractal.

In addition to the fractoid API, Fractal also provides access to an enumerator class that
controls how the system extends matches. The default enumerator looks at all neighbours of

a match, but users can override its methods for fine-grain control over the extension process.
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For example, the paper implements a specialized algorithm for listing k-cliques [71] within
Fractal using the enumerator API, where extension candidates are generated by intersecting

adjacency lists of all vertices in the match.

Discussion

Fractal’s main contribution is the relatively simple switch to depth-first exploration, which
avoids the memory bottlenecks from Arabesque. However, this also leads to more wasted
computation than before in applications like FSM, as the matches must be recomputed after
every aggregation. In practice, it seems that this recomputation still outweighs the costs of
breadth-first exploration, as FSM on Fractal outperforms Arabesque and even the FSM-
specific system ScaleMine [2]. As we will see with pattern-based graph mining, however,
the wasted computation can be completely eliminated as well. In this sense, Fractal’s use
of pattern fractoids (or lack thereof) is a missed opportunity.

The other major contribution is the two-level programming model, which allows for
more declarative programs using fractoids, as well as greater control using the enumerator.
Fractoids remain a strong abstraction for expressing graph mining tasks, but they still
are not fully declarative for the same reasons that filter-process is not declarative. Both
triangle counting and FSM applications require users to think about how matches will be

constructed vertex by vertex or edge by edge.

3.1.3 AutoMine: Pattern-Based Graph Mining

Concurrently to the development of depth-first exploration by [77], AutoMine [146] intro-
duced pattern-based exploration, a radically different processing model that does not naively
extend matches, but constructs exactly the desired matches according to a static pattern
matching plan. The resulting programming and processing models are far simpler (though
also more restrictive) than Fractal or previous systems, while performance is much better.

AutoMine is motivated by two observations. First, common graph mining applications
involve computing the pattern of a match, and second, specialized pattern matching base-
lines are orders of magnitude faster than previous graph mining systems at computing the
matches for a given pattern. Putting these observations together, AutoMine proposes a
pattern-based graph mining model, where user programs consist only of a list of patterns
the user is interested in. Then, AutoMine generates efficient native code that matches these
input patterns in the data graph and returns their matches to the user.

Conceptually, the compilation process is simple. Given a pattern, AutoMine computes
a matching schedule, which dictates in what order vertices in the pattern are matched with
vertices in the data graph to obtain a match. Then, AutoMine uses this matching schedule
to generate a series of nested loops, one per pattern vertex, that iterate over candidate data
vertices for every pattern vertex. This models a depth-first backtracking search through the

space of matches for this pattern.
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1 int result = 0;
2 for (v in V(g)) {
3 for (u in v.nbrs()) {
4 vertex x[] = v.nbrs() N u.nbrs();
5 x = subtract(x, {u, v});
6 for (w in x) {
7 result += 1;
8 }
9 }

1 auto p = generateClique(3); 10 }

2 int n = count(g, p); 11 result /= 3;

(a) User program. (b) Generated code executed by the backend.

Figure 3.4: Triangle counting application in AutoMine [146].

Figure shows how a triangle counting program is compiled. The outermost loop
iterates over all vertices in the graph to obtain the first vertex in the triangle. The middle
loop iterates over the neighbours of the first vertex to obtain the second vertex, and the
innermost loop iterates over all vertices in the neighbourhoods of both the first and second
vertex, thereby obtaining the last vertex in the triangle.

Generating such code automatically is straightforward [123] [I7]. For each pattern vertex
AutoMine checks the neighbours that arrive before it in the schedule. The candidates for
the pattern vertex are precisely the intersection of the adjacency lists of whichever data
vertices are matched to those neighbours. However, choosing a schedule significantly affects
performance. AutoMine uses an abstract probabilistic graph, where all pairs of vertices are
adjacent with equal probability, in order to model the efficiency of a given schedule, and

explores the space of all schedules to determine the minimal one.

Discussion

Pattern-based graph mining eliminates Arabesque’s memory bottlenecks and the wasted
computation from per-match filtering, and the compiling pattern programs avoids the over-
heads of dynamic runtimes in previous systems. But while pattern-based graph mining is a
powerful concept, it is difficult to judge it based on its treatment in this work. For instance,
“root symmetry” is presented as a novel optimization, but is simply a special case of sym-
metry breaking, first introduced by the bioinformatics community [93] and widely adopted
by pattern matching work in databases [123] 134} [17, 33, 101}, B2 102]. Similarly, AutoMine
presents an algorithm for computing the symmetries of a pattern that runs in O(n!) time,
whereas the problem is known to be fixed-parameter tractable, and there are available
open-source libraries for computing the symmetries, one of which is used by Arabesque for

computing the pattern of a match [I17].
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1 auto p = generateClique (k);

1 val cliques = g.vfractoid().expand (1) 2 vector<> cliques = match(g, p);
2 .filter (s -> 3 for (auto &s : cliques) {
3 s.nEdgesAdded==s.nVertices-1) 4 if (isDuplicate(s)) break;
4 .explore (k) 5 for (auto v : s.vertices) {
5 .aggregate(s -> // defining v 6 aggregationStore[v] += 1;
6 s.forEachVertex(v -> map(v, 1)), 7 }
7 (n1, n2) -> nil+n2) // defining & 8 }

(a) Fractal (b) AutoMine

Figure 3.5: Local Clique Counting programs in Fractal and AutoMine. System functions are
highlighted blue.

3.2 Consequences of Application-Obliviousness

Such systems are application-oblivious, since they attempt to adapt graph mining seman-
tics into otherwise generic systems while ignoring nuances between different applications.
Programmable graph mining system frontends must allow users to specify S, v, and (R, ®)
from Eq. in order to support diverse applications. However, because existing systems
were not designed with these application semantics in mind, there is considerable variation
in the interfaces for specifying these semantics, as well as backend support for efficiently
executing them. Specifically, different frontends afford different levels of understanding to
the underlying system backend, and backends have limited support for executing these
semantics natively.

Performance, scalability, and programmability issues often manifest in application-oblivious
systems as mismatches between the system’s internal view of an application and the applica-
tion’s true semantics as defined by Eq. Thus, drawbacks of application-oblivious design
can be illustrated by relating the semantics of existing programmable graph mining systems
with the semantics of different graph mining applications. This section analyzes state-of-
the-art systems preceding PEREGRINE (developed in Chapter [5)) in this manner, showing
how the issues discussed in the previous sections trace back to application-oblivious de-
sign choices. Consider Fractal [77] and AutoMine [146], two recent graph mining systems.
Figure shows programs in Fractal [77] and AutoMine [146] for local k-clique counting.

Fractal. On Line [I] of Figure using vfractoid specifies that vertex-induced sub-
graphs are desired, and expand (1) specifies that new subgraphs should be produced by
expanding previous subgraphs by one vertex at a time. To avoid generating several auto-
morphic subgraphs from expansions, Fractal calls an internal isCanonical function on each
expanded subgraph and discards those which are not the canonical representative of their
automorphism group. The remaining subgraphs are then filtered on Line [3] with a user-
defined function that checks a sufficient property for a subgraph to be a clique. By calling
explore(k) on Line 4 the user specifies that the preceding traversal and filter should be
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repeated k times. Finally, the unique k-clique matches that result can be passed to the
user-defined aggregate functions. On Line [6] each vertex in the match is mapped to 1, to
be later summed by the system into the local k-clique counts, and on Line|7]the user defines
the inner aggregation operator as addition.

Thus, the combination of fractoid logic, canonicality checking, the user-defined filter
function, and the final check in the user-defined aggregate function all come together to
define S C Sy. The calls to map from the user code define v, and the aggregation operator
is defined by adding values.

There are two major points to notice. First is that even conceptually simple applications
require additional knowledge of the underlying system to implement. Consider the definition
of S as the set of k-cliques in g is split across 3 distinct regions of system and user code
(fractoid API, canonicality checks, and filter), because Fractal directly splices user code into
simple Spark queries. The user-defined filter function, for instance, uses the nEdgesAdded
property of the subgraph, which is directly tied to Fractal’s internal graph traversal imple-
mentation. Fractal stores the number of edges added to a subgraph when expanding by a
vertex, and in a clique the number of edges added will be equal to the remaining vertices.
In order to properly specify .S, the user must reason about how Fractal traverses the graph
and at what point each user-defined function will be called.

Second, the crux of the application is opaque to the system. The user-defined (and
hence opaque) filter definition is what specifies cliques as the desired subgraphs, and
the check for k-cliques before aggregation also occurs in user code. Fractal’s backend is
left with only 2 pieces of actionable information: all processed subgraphs are unique and
all processed subgraphs have at most k vertices. This leaves few opportunities to optimize
execution based on the user application. Fractal does assume that the filter function
is antimonotonic, i.e., once a subgraph e is filtered out, no subgraph containing e will
pass the filter. This assumption allows Fractal executions to terminate without checking
every subgraph in S, while maintaining equivalent semantics (though it renders any non-
antimonotonic applications difficult to implement, as non-antimonotonic filters have to be

implemented by the user within the aggregate UDF).

AutoMine. AutoMine has only one method for directly accessing subgraphs of the graph:
the match function that returns a set of matches for a pattern. On Line[I] the user specifies
a k-clique pattern and on Line [2] the call to match yields the k-clique matches in g. The
remaining semantics of the application must be specified fully in user code. The user checks
each clique to determine whether it is a canonical automorphism or a duplicate in order to
narrow down S = £*(g,p). The unique matches must then be aggregated by the user, who
directly implements v and &.

Most graph mining applications are infeasible to execute on large data graphs in Au-

toMine without significant developer effort. Unlike Fractal which provides automatic dupli-
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cate filtering and parallel aggregation utilities, AutoMine users must correctly and efficiently
eliminate duplicates and aggregate matches. Crucially, the user code must also cope with
the memory overheads of materializing the billions or trillions of k-clique matches that ex-
ist even in medium-sized graphs, and perform aggregations scalably. Requiring such effort
undermines the purpose of a general-purpose graph mining system.

Furthermore, AutoMine has no view of the application semantics beyond the pattern
passed as input to match. Since user programs interact little with system APIs, there is no
opportunity for AutoMine to analyze the underlying application and optimize its execution

accordingly. As a result, AutoMine is application-oblivious.

Other existing graph mining systems support the semantics of Eq. 2.I] in similar ways
(e.g., RStream [219] is designed similarly to Arabesque and Fractal, G-Miner [45] is similar
to AutoMine), and are therefore also application-oblivious. In the next chapter, the thesis
lays groundwork for application-aware graph mining by developing constructs for specifying
S that can unify any structural filters on subgraphs and their neighbourhoods with existing

subgraph isomorphism semantics.
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Chapter 4

Using Patterns to Specity
Interesting Subgraphs

A key component of the graph mining application semantics given by Eq. is the set
S of interesting subgraphs the application processes. Specifying S can be thought of as
filtering S, based on either structural or non-structural properties of subgraphs. Structural
properties refer to the presence or absence of edges, labels on edges and vertices, as well
as the structure of the graph surrounding the subgraph. Non-structural properties are the
application-specific meaning given to a given structure. For example, being isomorphic to a
given pattern, being vertex-induced, possessing a given set of labels, or not being adjacent
to a given vertex are all structural properties of subgraphs, while the sum of a subgraph’s
integer labels or the frequency of its pattern is a non-structural property.

As illustrated in Chapter [3] previous systems specify S using a mixture of configuration
flags, user-defined functions, and system APIs to encode the set of desired subgraphs, re-
sulting in opaque user programs and wasted computation. Instead of forcing users to define
S in ad-hoc ways corresponding to the design of the underlying system, this thesis takes
a principled approach, proposing graph patterns as the primary abstraction for specifying
structural properties, including constraints on the edges, labels, and local neighbourhood
of desired subgraphs. Viewing graph mining from a pattern-based perspective offers several

benefits when designing application-aware systems.

1. Transparent. Patterns clearly describe subgraph structure without the need for opaque
user-defined functions. This allows systems that can interpret patterns to directly gen-
erate matches instead of exploring unnecessary subgraphs that end up being filtered

by user code.

2. Flexible. Patterns are a system-agnostic abstraction divorced from the processing
model of the underlying graph mining backend. A pattern does not prescribe how

the graph must be traversed to find its matches, it only describes the end result.
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Thus, adopting patterns as the foundation for a system frontend affords complete

freedom in designing an efficient backend to explore matches.

3. Efficient. By specifying S with patterns instead of user-defined functions, graph min-
ing systems can exploit the well-established literature on fast subgraph matching
given pattern inputs. For instance, in previous graph mining systems like Fractal [77]
and AutoMine [146], indicating only subgraphs with a specific labeling are desired
user-defined filtering subgraphs based on their patterns, incurring a per-subgraph iso-
morphism check. On the other hand, the subgraph matching literature uses the labels
of the input graph pattern to guide its exploration, completely avoiding any subgraphs
with undesirable labels and thereby eliminating the need for a filter [102] 175, [101].

However, patterns currently cannot express many useful structural properties of sub-
graphs in S. The existing definition of subgraph isomorphism used by graph mining sys-
tems (and the broader graph mining and subgraph matching literatures) does not account
for other structural properties that are commonly used to distinguish desired subgraphs
in graph mining applications. Namely, subgraph isomorphism is only concerned with the
existence of edges, and cannot express the absence of edges. A common example of edge
absence in graph mining is the vertex-induced constraint on subgraphs, which requires that
all edges between the vertices of a subgraph to be present within the subgraph. Viewed
from the negated perspective, this means any pair of vertices in the subgraph which are
not adjacent must not be adjacent in the data graph: i.e., there is an absence of an edge.
Because this absence is not expressible in standard subgraph isomorphism, AutoMine [146]
only returns vertex-induced subgraphs, with no option for edge-induced, while other systems
choose between edge-induced and vertex-induced based on a configuration flag [205] [77].

To rectify these shortcomings, this chapter develops an extended definition of subgraph
isomorphism that augments patterns with two novel constructs, anti-edge and anti-vertex,
which encode the lack of an edge or vertex, respectively. Anti-edges and anti-vertices express
filters on the structures and neighbourhoods of matches according to well-defined semantics

that can be integrated with existing systems to increase application-awareness.

Notation. For clear exposition, we introduce notation to clearly distinguish anti-edges
and anti-vertices from standard vertices and edges. Where G is the set of all finite graphs,
let G, D G also contain all finite graphs containing anti-vertices and/or anti-edges. Then
consider a pattern p € G,. Anti-vertices are a proper subset of vertices written V= (p) C
V(p), while the remaining standard vertices are written V1 (p) = V(p) \ V™ (p). It is also
convenient to distinguish edges with anti-vertex endpoints. Note that no edge ever has both

endpoints as anti-vertices. Write the set of edges with standard vertex endpoints as

EVF(p) = {(u,v) € E(p) : u,v € VT (p)},
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and the set of edges with one anti-vertex endpoint as
E""(p) ={(u,v) € E(p) :u eV (p) Vo eV (p)}

Then anti-edges are a proper subset of edges with standard vertex endpoints, E~(p) C
EV*(p), and the remaining standard edges are written E*(p) = EV*(p)\ E~(p). As a
final piece of notation, the standard subgraph of p consisting of only standard vertices and

standard edges is written pT.

Overview. Section[4.IJand Section [{.2]introduce formal semantics for anti-edges and anti-
vertices, respectively. Then Section [.3] defines extended subgraph isomorphism. Finally,
Section 4] concludes with a discussion on the impact of extended subgraph isomorphism
on application-awareness. For many of the same reasons that anti-edge and anti-vertex are
useful for graph mining, they are useful in graph databases and subgraph matching systems
and can be generalized. To demonstrate, Appendix [A] generalizes anti-vertex to different

graph models and subgraph matching definitions.

4.1 Anti-Edge: Concept and Semantics

This section develops the concept of the anti-edge. An anti-edge is a special edge indicating
non-adjacency of a pair of vertices in a match, i.e., expressing the absence of an edge. This
allows for local structural filters on subgraphs to be specified transparently using graph
patterns instead of configuration flags or user-defined code. Section provides use cases
motivating the anti-edge construct, and Section [£.1.2) formalizes semantics for the anti-edge

constraint. Anti-edges in patterns are visualized by a dashed line connecting two vertices.

4.1.1 Absence of Edges

In this section, we present a motivating use case for structural filters encoding the absence

of edges in subgraphs.

Example 4.1.1. Consider the following Friend Recommendation use case. Link prediction
in social networks [I37] is a common application of graph analytics. In a friendship graph for
a social network service, where vertices represent people and edges represent friendship, it
is desirable to recreate real-life associations between users as accurately as possible in order
to better target advertisements and other services. To this end, the service recommends
users who are mot adjacent in the friendship graph, but who seem likely to be friends in
real life to connect on their platform. One way to measure this likelihood is by observing
the overlap between subgraphs representing incomplete friend groups where some pairs of

users are not adjacent but have friends in common [I3§].
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(a) A social network service recommends friendship between non- (b) Likely friend group pattern:

adjacent users who have common friends. anti-edge denotes non-friends.

Figure 4.1: Friend recommendation use case.

Figure shows a dense friendship graph, where Jon, Bill, and Kim are friends with
every other user. Ana and Tia are not friends with each other, but they are both friends with
Jon, Bill, and Kim. The pattern shown in Figure [4.1b] captures established friend groups
with three users where at least one user has an additional friend not currently in the group.
Due to the anti-edge, cliques in the friendship graph are excluded from results, as there are
no missing links to be predicted. On the other hand, both tailed triangles and chordal cycle
patterns are included. In previous systems, these semantics can only be expressed through

a user-defined filter that checks subgraphs for the existence of edges.

4.1.2 Formal Anti-Edge Semantics

Anti-edges in a pattern encode constraints on the structure of its matches, specifying which
vertices should not be adjacent. Let ¢ € G be a graph and p € G, be a pattern. A match
m € E(g,p™) matching the standard edges and vertices of p satisfies the anti-edge constraint
if and only if

V(u,v) € E(p), (m(u), m(v)) & E(g)

The two vertices connected by an anti-edge are called anti-adjacent. These semantics enable
complex structural filters to be expressed simply: if a match does not satisfy the anti-edge

constraint, it can be pruned from exploration.

Edge-Induced and Vertex-Induced Patterns. As discussed in Section [2.1] depending

on the mining use case, desired subgraphs are either edge-induced or vertex-induced. For
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example, Frequent Subgraph Mining (FSM) relies on edge-induced subgraphs, whereas Motif
Counting requires vertex-induced subgraphs. Similarly, matches of a pattern can be thought
of as edge-induced or vertex-induced, depending on the existence of additional edges in the
graph.

Whereas previous systems presented a dichotomy between vertex-induced and edge-
induced exploration [205] [77], or only allowed one form of exploration [146], under extended
subgraph isomorphism the vertex-induced requirement is expressed directly through anti-
edges. Specifically, the following result shows how edge-induced and vertex-induced patterns

are related.

Theorem 4.1.1. Let g € G be a graph. Let p¥ be a pattern without any anti-edges, and let
pV be a pattern with the same vertices and edges as p¥, such that every pair of vertices in
pP that are not adjacent are anti-adjacent in p¥'. Then the vertex-induced matches of p¥ in

g are equal to the edge-induced matches of pV in g:
{s € &(g,p") : 5 is vertex-induced} = {s € E,(g,p") : s is edge-induced}.

Proof. To prove equivalence of the two sets, we first show that every edge-induced match
of pV is a vertex-induced match of p¥, and then we show that every vertex-induced match
of p¥ is an edge-induced match of pY.

Let m be an edge-induced match for p¥'. Observe that as p¥ and p" contain the same
edges and vertices, m is also a match for p¥. By definition of p¥’, for any edge (u,v) ¢ E(p”),
there is an anti-edge constraint between u and v in pV'. Since m is a match for pV, it satisfies
this anti-edge constraint, such that m(u) and m(v) are not adjacent in the data graph. This
means there is an edge between m(u) and m(v) if and only if (u,v) € F(p¥). Therefore, m
is a vertex-induced match of p¥.

Conversely, let m be a vertex-induced match for p¥. Since m is isomorphic to p¥, it
contains all edges of p. Furthermore, m is vertex-induced, so if a pair of pattern vertices
u1,up in pP are not adjacent, then the corresponding data vertices m(u;) and m(us) are
not adjacent either. Hence, m satisfies the anti-edge constraint for ui, us. As this holds for

all pairs of non-adjacent vertices in p¥, m is also a match for p¥. ]

Theorem unifies edge-induced and vertex-induced exploration, such that no binary
choice between the two is necessary. Anti-edges can be added to graph patterns in order to

directly specify the desired subgraphs.

4.2 Anti-Vertex: Concept & Semantics

This section develops the concept of the anti-vertex. An anti-vertex is a vertex in the pattern
that indicates absence of a vertex in the resulting subgraph. Anti-vertices allow users to

express constraints on the neighbourhoods of subgraph vertices declaratively, simply by

27



Starfleet Starfleet .. FH5
Academy Academy ’ ‘
Anomalous @
KFC @ Subgraph KFC . FH4

FH3( FH3

(O—rH2 Y
Chilton - : Chilton ’:‘e %11131{5;5 .' '.
b

Normative FH

Subgraph

C‘ School @ Business O Fire Hydrant ]

(a) The anomalous subgraph of interest is the one where the school and (b) Anomaly pattern: third fire
the business are connected with two fire hydrants and not three. hydrant marked as anti-vertex.

Figure 4.2: Anomaly detection use case.
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Figure 4.3: Maximal cliques use case.

describing which vertices are undesirable. Section provides use cases to motivate the
need for the anti-vertex construct, and Section [£.2] formalizes semantics for the anti-vertex

constraint.

4.2.1 Constraints on Match Neighbourhoods

In this section, we present motivating use cases that constrain the subgraphs of interest
based on their neighborhoods. These use cases can employ anti-vertices in the pattern to
declaratively specify the absence of vertices in a subgraph. To easily visualize an anti-vertex
in a pattern, anti-vertices are pictorially represented as vertices with dashed borders as

opposed to solid borders used for regular vertices.

Example 4.2.1. Consider the use cases below.

1. Anomaly Detection. Identifying anomalies in graph data [I64] is crucial across various
domains. Certain anomalies are identified as subgraphs that have missing vertices from
a reference (normative or non-anomalous) subgraph [79]. Figure shows an example

of a city planning scenario. One of the planning requirements is if there is a school and
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a business close to each other, then there must be at least three fire hydrants nearby
that are useful for both locations. For the graph shown in Figure the subgraph with
Chilton and Luke’s Diner satisfies the allocation requirement because of fire hydrants FH1,
FH2 and FH3. However, the subgraph with Starfleet Academy and KFC is anomalous since
there are only two fire hydrants FH4 and FH5.

Finding subgraphs with exactly two fire hydrants is not straightforward. In a naive
solution, the user first finds all subgraphs with two fire hydrants, then implements a
user-defined filter to check each subgraph for a third fire hydrant. Instead, the absence
of a third fire hydrant neighbor can be directly expressed using an anti-vertex. To find
anomalous subgraphs with two fire hydrants, a normative subgraph can easily be turned
into a pattern by marking a fire hydrant as an anti-vertex. Figure shows the pattern
containing an anti-vertex that exactly returns the anomalous subgraph containing FH4,
FH5 without returning the normative subgraph involving FH1, FH2, FH3. The anti-vertex
(indicated by the dotted border) requires that any school and business matched by the
query do not have a third fire hydrant in their neighborhood. In this case, the anti-vertex
provides a declarative way to express a constraint on the shared neighborhood of nearby

schools and businesses.

. Mazimal Cliques. Finding and enumerating maximal cliques is a popular graph mining
problem, with applications in social network analysis, financial analysis, security and
biology [54]. In Figure the clique r-s-t-u is maximal, but the other cliques are
not maximal since they all can be extended into the larger clique p-g-r-t-u by adding
a vertex. Since the maximality constraint simply limits the vertices in cliques to not
have a common neighboring vertex, the absence of this common neighboring vertex can
be directly expressed using an anti-vertex. It suffices to express a clique of size k + 1
and mark one of the vertices as an anti-vertex. As shown in Figure the pattern
contains an anti-vertex connected to all the vertices of a 4-clique. This eliminates all
the non-maximal 4-cliques from the result set, while still returning the maximal r-s-t-u

clique.

. Approzimate Subgraph Matching. Approximate subgraph matching often allows optional
and forbidden vertices and edges [232] to provide a loose subgraph template for which
subgraphs are matched. As subgraphs get matched for approximate templates, identi-
fying which subgraphs result due to the vertices being optional requires adding a con-
straint for the vertex to be absent. Such a constraint indicating absence of vertices can

be achieved using anti-vertices.

. Contrasting Quasi-Cliques. Recent research [13] on mining for multigraphs argues the
strength of finding collection of vertices that are dense in one graph but less connected

in a second graph. An interesting sub-case is mining contrasting quasi-cliques where the
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sparser subgraph is fully imposed on a subset of vertices, i.e., remaining vertices are not
connected to the subgraph. Here, the isolated vertices from the rest of the subgraph can

be represented using anti-vertices.

The above examples showcase the need for easily expressing absence of vertex connec-
tions in the neighborhood of explored subgraphs. A well-defined anti-vertex construct would
also enable thorough reasoning about correctness as well as methodical exploration of useful

optimizations.

4.2.2 Formal Anti-Vertex Semantics

As demonstrated in Example the anti-vertex is a declarative construct that allows
users to express constraints simply in terms of which results are not desired. Next, the

formal semantics of anti-vertices are discussed.

Denoting Vertex Neighbourhoods. To specify the anti-vertex constraint concisely, it
is convenient to use a shorthand for the vertices in the neighbourhood of a match vertex.
Let g and h be graphs. For v € V(g), e € E(h), u € V(h), the (e, u)-neighbourhood of v is
the set of vertices in V(g) which contain the labels of u and are adjacent to v via edges like

e. Formally, we write the (e, u)-neighbourhood of v as

N(v,e,u) ={v" € V(g): (v,v) € E(g)
A Wy(e) = Wy((v,0))
A Lp(u) C Lg(v')}.

Semantics. Anti-vertices encode an additional requirement on matches, namely that an
anti-vertex should not be possible to match. Suppose m is a subgraph matching all edges
and standard vertices of a pattern p € G,. Let C : V~(p) — P(V(g)) be a function which
returns the set of data vertices that can be mapped to by m from a query anti-vertex. The
match m is valid only if

Vaue V™ (p),C(u) = 2.

Hence, an anti-vertex will invalidate a match if there are vertices in the data graph which
can be mapped to it.

The definition of C' depends on the underlying subgraph matching semantics (homo-
morphism, no-repeated-edge, isomorphism). To ensure the semantics of anti-vertices is con-
sistent with the matching semantics, we define C' by adhering to the requirements on m
which allow or disallow multiple different pattern vertices/edges to be mapped to the same
vertices/edges. Here, we use isomorphism semantics as they are most pertinent for graph

mining.
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Let p be a pattern, g be the data graph, and m be a match for p in g. In isomorphism
semantics, m must be injective with respect to both edges and vertices, with no repetition.
Hence, data vertices already mapped to by m (and implicitly, the edges incident on those
vertices) cannot fulfill the anti-vertex requirement to invalidate the match. C' is defined as
follows.

C@ =[]  Nm),(@uv),a)\mV(p)

v:(u,v)EET(p)

Applicability. These semantics are system-agnostic, and can be adapted to different
matching semantics, graph models, and even workloads. Appendix defines C' for ho-
momorphism and no-repeated-edge matching semantics, and generalization of anti-vertex
to the property graph model can be found in Appendix Finally, Appendix [A.2] in-
tegrates anti-vertex with the popular Cypher [86] query language commonly used in graph

database management systems [161].

4.3 Extended Subgraph Isomorphism

With formal semantics for anti-edge and anti-vertex, this section extends the notion of
subgraph isomorphism to encompass structural filters and neighbourhood constraints.

For graphs p € G,,g € G, an extended subgraph isomorphism ¢, : V(p) — V(g) is a
subgraph isomorphism that preserves anti-edge and anti-vertex constraints. Formally, an

extended subgraph isomorphism ¢, satisfies the following properties:

o(p) € E(gT, "),
V(u,v) € E~(p), (d«(u), ¢x(v)) € E(g),
Vi e V= (p), C(a) = 0.

The first property states that every extended subgraph isomorphism is also a standard sub-
graph isomorphism from p™ to gT, i.e., it produces a match of p™ in g*. The latter properties
enforce that the match generated by ¢, meets the anti-vertex and anti-edge constraints de-

veloped earlier. The set of matches obtained through extended subgraph isomorphisms is
E(g:p) € E(g,p).

Automorphisms. Since a match m € & (g, p) is a subgraph of g, which has no anti-edges
or anti-vertices, its automorphisms are as defined in Section [2.I] On the other hand, it is
important to note that not every automorphism of m is necessarily a match of p under
extended subgraph isomorphism. The set of unique matches for p in g under extended
subgraph isomorphism is written £ (g,p) C E(g,p) and consists of one representative per

automorphism group contained in & (g, p).
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4.4 Conclusion

This chapter proposed formal semantics for using patterns to encode constraints on the
local structure and neighbourhood of subgraphs, in the form of the anti-edge and anti-
vertex constructs. Anti-edge and anti-vertex are declarative, i.e., they are agnostic to any
given system or algorithm, describing the behaviour of filters without prescribing how the
filters must be enforced by a system backend. Anti-edges resolve the tension between edge-
induced and vertex-induced exploration as separate execution modes in previous systems,
because vertex-induced subgraphs are matches of patterns where every pair of vertices is
either adjacent or anti-adjacent. Therefore, a system that is aware of anti-edges only needs
one execution mode to explore edge-induced and vertex-induced subgraphs. Meanwhile,
anti-vertices enable reasoning about the neighbourhoods of matches without requiring user
code to manually inspect adjacency lists of match vertices.

By supporting the extended definition of subgraph isomorphism incorporating anti-edges
and anti-vertices, system backends become more application-aware than previously possi-
ble. Application-specific structural properties of desired subgraphs hitherto implemented in
opaque user-defined functions become transparent, facilitating the development of novel op-
timizations as well as reuse of existing research on subgraph matching. Developing constructs
and semantics for expressing non-structural properties or non-local structural properties of
subgraphs, such as constraints on matches beyond their immediate neighbourhoods, are left
for future work.

In the next chapter, the thesis applies the application-aware design philosophy, including
extended subgraph isomorphism semantics, to develop an efficient graph mining system,

PEREGRINE.
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Chapter 5

Peregrine: Application Semantics
in Pattern-Based Systems

As discussed in Chapter [3] at the heart of existing graph mining systems is an exploration
engine that exhaustively searches subgraphs of the graph, and a series of filters that prune
the search space to continue exploration for only those subgraphs that are of interest (e.g.,
ones that match a specific pattern) and are unique (to avoid redundancies coming from
structural symmetries). The exploration happens in a step-by-step fashion where small sub-
graphs are iteratively extended based on their connections in the graph. As these subgraphs
are explored, they are verified via canonicality checks to guarantee uniqueness, and are ana-
lyzed via isomorphism computations to understand their structure (or pattern). After that,
the subgraphs are either pruned out because they don’t match the pattern of interest, or
forwarded down the pipeline where their information is aggregated at the pattern level.
While such an exploration process is general enough to compute different mining use
cases including Frequent Subgraph Mining and Motif Counting, we observe that it remains
largely oblivious to the patterns that are being mined. Hence, state-of-the-art graph mining
systems face three main issues, as described next: (1) These systems perform a large number
of unnecessary computations; specifically, every subgraph explored from the graph, even in
intermediate steps, is processed to ensure canonicality, and is analyzed to either extract
its pattern or to verify whether it is isomorphic to another pattern. Since the exploration
space for graph mining use cases is very large, performing those computations on every
explored subgraph severely limits the performance of these systems. (2) The exhaustive
exploration in these systems ends up generating a large amount of intermediate subgraphs
that need to be held (either in memory or on disk) so that they can be extended. While
systems based on breadth-first exploration [205], 219] demand high memory capacity, other
systems like Fractal [77] and AutoMine [146] use guided exploration strategies to reduce this
impact; however, because they are not fully pattern-aware, they process a large number of
intermediate subgraphs which severely limits their scalability as graphs grow large. (3)

The programming model in these systems is strongly tied to the underlying exploration
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‘Arabesque Fractal G-Miner RStream PRG-U
PEREGRINE\ 2-1317x  1.1-737x  3-131x 2-2016x 2-42X

Table 5.1: PEREGRINE performance summary. PRG-U indicates PEREGRINE without sym-
metry breaking, to model systems that are not fully pattern-aware (e.g., AutoMine).

strategy, which makes it difficult for domain experts to express complex mining use cases. For
example, subgraphs containing certain pairs of strictly disconnected vertices (i.e., absence
of edges) are useful for providing recommendations based on missing edges; mining such
subgraphs with constraints on their substructure cannot be directly expressed in any of the
existing systems.

In this chapter, we take a ‘pattern-first’ approach towards building an efficient, application-
aware graph mining system. We develop PEREGRINEﬂ a pattern-aware graph mining system
that directly explores the subgraphs of interest while avoiding exploration of unnecessary
subgraphs, and simultaneously bypassing expensive computations (isomorphism and canon-
icality checks) throughout the mining process. PEREGRINE incorporates a pattern-based
programming model that enables easier expression of complex graph mining use cases, and
reveals patterns of interest to the underlying system. Using the pattern information, PERE-
GRINE efficiently mines relevant subgraphs by performing two key steps. First, it analyzes
the patterns to be mined in order to understand their substructures and to generate an
exploration plan describing how to efficiently find those patterns. And then, it explores the
data graph using the exploration plan to guide its search and extract the subgraphs back
to user space.

Our pattern-based programming model treats graph patterns as first class constructs: it
provides basic mechanisms to load, generate and modify patterns along with interfaces to
query patterns in the data graph. Furthermore, PEREGRINE supports the extended subgraph
isomorphism semantics introduced in Chapter [4] to express advanced structural constraints
on patterns to be matched. This allows users to directly operate on patterns and express
their analysis as ‘pattern programs’ on PEREGRINE. Moreover, it enables PEREGRINE to
extract the semantics of patterns which it uses to generate efficient exploration plans for its
pattern-aware processing model.

We rely on theoretical foundations from existing subgraph matching research [93], [33] to
generate our exploration plans. Since PEREGRINE directly finds the subgraphs of interest, it
does not incur additional processing over those subgraphs throughout its exploration pro-
cess; this directly results in much lesser computation compared to the state-of-the-art graph
mining systems. Moreover, PEREGRINE does not maintain intermediate partial subgraphs

in memory, resulting in much lesser memory consumption compared to other systems.

TPEREGRINE source code: https://github.com/pdclab/peregrine
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Figure 5.1: Step-by-step exploration in graph mining systems starting at vertex 1 and vertex
3. In total, 13 partial matches get explored and 13 canonicality checks are performed that
prune out 5 partial matches. Isomorphism checks are performed on the remaining 8 matches
for applications like FSM.

PEREGRINE runs on a single machine and is highly concurrent. We demonstrate the ef-
ficacy of PEREGRINE by evaluating it on several graph mining use cases including frequent
subgraph mining, motif counting, clique finding, pattern matching (with and without struc-
tural constraints), and existence queries. Our evaluation on real-world graphs shows that
PEREGRINE running on a single 16-core machine outperforms state-of-the-art distributed
graph mining systems including Arabesque [205], Fractal [77] and G-Miner [45] running on
a cluster with eight 16-core machines; and significantly outperforms RStream [219] run-
ning on the same machine. Furthermore, PEREGRINE could easily scale to large graphs and
complex mining tasks which could not be handled by other systems. Table summarizes
PEREGRINE’s performance.

5.1 Issues with Graph Mining Systems

While several graph mining systems have been developed [205] [77, [45] 219] [146], they are
not pattern-aware. Hence, they demand high computation power and require large memory
(or storage) capacity, while also lacking the ability to easily express mining programs at a
high level.

5.1.1 Performance

(A) High Computation Demand. Graph mining systems explore subgraphs in a step-
by-step fashion by starting with an edge and iteratively extending it depending on the
structure of the data graph. Since they do not analyze the structure of the pattern to
guide their exploration, they perform a large number of: (a) unnecessary explorations; (b)

canonicality checks; and, (c) isomorphism checks.
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Figure [5.1] shows an example of step-by-step exploration starting from vertex 1 and ver-
tex 3. In step 1, both the vertices get extended generating 6 partial matches each of size 1
(edges). These are tested for canonicality which prunes out (3,1) and (3,2) (non-canonical
matches are marked with —). For applications like FSM, isomorphism checks are performed
on each of the canonical matches to identify their structure and compute metrics. Then,
the remaining 4 matches progress to the next step and the entire process repeats. While
explorations get pruned via both canonicality and isomorphism checks, every valid partial
match is extended to multiple matches which may no longer be valid; generation of interme-
diate matches which do not result into valid final matches is unnecessary. Furthermore, all
intermediate partial matches (unnecessary and valid matches) are operated upon to identify
their structure (i.e., isomorphism check) and to verify their uniqueness (i.e., canonicality
check). In our example, 13 intermediate matches are generated, 5 of which are unnecessary;
13 canonicality checks and 8 isomorphism checks are performed. If these checks are not
performed at every step (as done in Fractal [77] by delaying its filter step), a massive
amount of partial and complete matches that do not contribute to final result would get
generated.

We verified the above behavior by profiling graph mining systems on clique counting
and motif counting applications. As shown in Figure and Figure on Patents [100]
(a real-world graph dataset), RStream [219] and Arabesque [205] generate over a billion
partial matches for clique counting while the total number of cliques is only ~3.5M (~99.7%
matches were unnecessary); similarly for motif counting, RStream generates over 40 billion
partial matches (~99.2% unnecessary) and Arabesque generates over 685 million partial
matches (~52% unnecessary). They also perform a large number (hundreds of millions to
billions) of canonicality checks and isomorphism checks. Since Fractal [77] explores in depth-
first fashion, its numbers are better than RStream and Arabesque; however, they are still

very high.

(B) High Memory Demand. Graph mining systems often hold massive amounts of
(partial and complete) matches in memory and/or in external storage. Systems based on
step-by-step exploration require valid partial matches so that they can be extended in
subsequent steps; the total size (in bytes) required by all matches (partial and complete)
quickly grows (often beyond main memory capacity) as the size of the pattern or data
graph increases. Such a memory demand is lower in DFS-based exploration (as done in
Fractal [77]). For clique and motif counting in Figure Arabesque consumes ~101GB

main memory while Fractal requires ~32GB memory.

5.1.2 Programmability

Programming in graph mining systems is done at vertex and edge level, with semantics

of constructing the required matches defined explicitly by user’s mining program. This
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Total Canonicality Isomorphism

System Matches Computations Computations
RStream 1.2B (342x) 33.0M 0
Arabesque 1.4B (400x%) 1.4B 3.5M
Fractal 659.0M (188x) 599.6M 0

(a) Profiling results for 4-Clique Counting on Patents [100] which contains ~3.5M cliques of size 4.
Isomorphism counts are 0 for RStream and Fractal due to their native support for clique computation.

System Total Canonicality Isomorphism
Matches Computations Computations
RStream 40.1B (125x) 40.1B 343.3M
Arabesque | 685.8M (2.1x) 685.8M 320.7M
Fractal 665.6M (2.1x) 649.1M 320.7M

(b) Profiling results for 3-Motif Counting on Patents [L00] which contains ~320M 3-sized motifs.

Figure 5.2: Number of matches explored (partial and full), canonicality checks performed,
and isomorphism checks performed by RStream [219], Arabesque [205] and Fractal [77].
Numbers in brackets indicate the magnitude of matches explored relative to result size.

means, mining programs expressed in those systems contain the logic for: (a) validating
partial and complete matches; (b) extending matches via edges and/or vertices; and, (c)
processing the final valid matches. As the size of subgraph structure to be mined grows,
the complexity of validating partial matches increases, making mining programs difficult
to write. For example, the multiplicity algorithm to avoid over-counting in AutoMine [146)]
cannot be used if the user wants to enumerate patterns, which leaves the responsibility
of identifying unique matches to the user. Furthermore, complicated structural constraints
beyond the presence of vertices, edges and labels cannot be easily expressed in any of the

existing systems.

5.2 Overview of Peregrine

We develop a pattern-aware graph mining system that directly finds subgraphs of interest
without exploring unnecessary matches while simultaneously avoiding expensive isomor-
phism and canonicality checks throughout the mining process. We do so by designing a
pattern-based programming model that treats graph patterns as first class constructs, and
by developing a processing model that uses the pattern’s substructure to guide the explo-

ration process.

Pattern-based Programming. In PEREGRINE, graph mining tasks are directly ex-
pressed in terms of subgraph structures (i.e., graph patterns). Our pattern-aware program-
ming model allows declaring (statically and dynamically generated) patterns, modifying
patterns, and performing user-defined operations over matches explored by the runtime.

This allows concisely expressing mining programs by abstracting out the underlying run-
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time details, and focusing only on the substructures to be explored. Moreover, we introduce
two novel abstractions, anti-edges and anti-vertices: an anti-edge enforces strict disconnec-
tion between two vertices in the match whereas an anti-vertex captures strict absence of a
common neighbour among vertices in the match. These abstractions allow users to easily

express advanced structural constraints on patterns to be mined.

Automatic Generation of Exploration Plan. With patterns of interest directly ex-
pressed, PEREGRINE analyzes the patterns and computes an exploration plan which is later
used to guide the exploration in the data graph. Specifically, the pattern is first analyzed to
eliminate symmetries within itself so that expensive canonicality checks during exploration
can be avoided. Then the pattern is reduced to its core substructure that enables identifying
matches using simple graph traversals and adjacency list intersection operations without

performing explicit isomorphism checks.

Guided Pattern Exploration. After the exploration plan is generated, PEREGRINE
starts the exploration process using our pattern-aware processing model. The exploration
process matches the core substructure of the pattern to generate partial matches using
recursive graph traversals in the data graph. As partial matches are generated, they are
extended to form final complete matches by intersecting the adjacency lists of vertices in
the partial matches. Since the entire exploration is guided by the plan generated from
the pattern of interest, the exploration does not require intermediate isomorphism and
canonicality checks for any of the partial and complete matches that it generates. This
reduces the amount of computation done in PEREGRINE compared to state-of-the-art graph
mining systems. Moreover, since matches are recursively explored and instantly extended to
generate complete final results, partial state is not maintained in memory throughout the

exploration process which significantly reduces the memory requirement for PEREGRINE.

Finally, we reduce load imbalance in PEREGRINE by enforcing a strict matching order
based on vertex degrees. Furthermore, we incorporate on-the-fly aggregation and early ter-
mination features to provide global updates as mining progresses so that exploration can

be stopped once the conditions required to compute final results are met.

5.3 Peregrine Programming Model

Since graph mining fundamentally involves finding subgraphs that satisfy certain structural
properties, we design our programming model around graph patterns as first class constructs.
This allows users to easily express the subgraph structures of interest, without worrying
about the underlying mechanisms of how to explore the graph and find those structures.
With such a declarative style of expressing patterns, PEREGRINE enables users to program

complex mining queries as operations over the matches. The clear separation of what to
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[L1] Set<Pattern> loadPatterns(string filename) ;

[G1] Set<Pattern> generateAllEdgeInduced(int size);

[G2] Set<Pattern> generateAllVertexInduced(int size);
[S1] Pattern generateClique (int size);

[S2] Pattern generateStar (int size);

[S3] Pattern generateChain(int size);

[C1] Set<Pattern> extendByEdge (Set<Pattern> patterns);
[C2] Set<Pattern> extendByVertex(Set<Pattern> patterns);

class Pattern {
Set<Vertex> getNeighbours(Vertex u);
Label getLabel(Vertex u);
bool areAdjacent(Vertex src, Vertex dst);
bool areAntiAdjacent(Vertex src, Vertex dst);
void addEdge(Vertex src, Vertex dst);
void addAntiEdge(Vertex src, Vertex dst);
void removeEdge (Vertex src, Vertex dst);
void markAntiVertex(vertex u);
void addLabel (Vertex u, Label 1);

Figure 5.3: PEREGRINE Pattern Interface.

find and what to do with the results helps users to quickly reason about correctness of their
mining logic, and develop advanced mining-based analytics.
We first present how patterns are directly expressed in PEREGRINE, and then show how

common graph mining use cases can be programmed with patterns in PEREGRINE.

5.3.1 Peregrine Patterns

Figure [5.3] shows our API to directly express, construct and modify connected graph pat-
terns. Patterns can be constructed statically and loaded using [L1], or can be constructed
dynamically [G1-G2, C1-C2, S1-S3]. [G1] and [G2] generate all unique patterns that
can be induced by certain number of edges and vertices respectively. [S1-S3] generate
special well-known patterns. [C1-C2] take a group of patterns as input, and extend one
of them by an edge or a vertex, to return all of the unique new patterns that result from
these extensions. This allows constructing patterns step-by-step which is useful to perform
guided exploration. The Pattern class provides a standard interface to access and modify
the pattern graph structure.

In most common applications, the edges and vertices in the pattern graph are sufficient
to specify S. For advanced mining use cases that require structural constraints within the
pattern, PEREGRINE supports adding anti-edges and anti-vertices to patterns for extended
subgraph isomorphism semantics from Chapter @] Consequently, due to Theorem [{.1.1]
our pattern-based programming doesn’t need to separately define edge-induced and vertex-
induced exploration strategies, as done in pattern-unaware systems [205] [77, 219].

The next section discusses non-structural constraints and operations on matches, which

are handled outside of the pattern graph in a user-defined function.
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void updateSupport(Match m) { mapPattern(m.getDomain()); }

bool isFrequent(Pattern p, Domain d) {
return (d[p].support() >= threshold);

}

DataGraph g = loadGraph("labeledInput.graph");

Set<Pattern> patterns = generateAllEdgeInduced (2);

while (patterns not empty) {
Map<Pattern, Domain> results = match(g, patterns, updateSupport);
Set<Pattern> frequentPatterns = results.filter (isFrequent) .keys();
patterns = extendByEdge (frequentPatterns);

}

(a) Frequent Subgraph Mining

int numTriplets = 0;
void countAndCheck(Match m) {
int numTriangles = loadAggregatedValue (m);
if (numTriangles*3/numTriplets > bound)
stopExploration();
else
mapPattern(m, 1);
}

DataGraph g = loadGraph("input.graph");
Pattern wedge = generateStar (3);
numTriplets = 2*count (g, wedge);

Pattern triangle = generateClique(3);
Map<Pattern, int> result = match(g, triangle, countAndCheck);

(b) Global Clustering Coefficient Bound

DataGraph g = loadGraph("input.graph"); DataGraph g = loadGraph("input.graph");
void output(Match m) { write(m); } Pattern p =
Pattern p = loadPattern("pattern.txt"); generateClique (desiredSize);
match(g, p, output); int result = count(g, p);

(c) Subgraph Matching (d) Clique Counting

DataGraph g = loadGraph("input.graph");
Set<Pattern> patterns = generateAllVertexInduced(size);
Map<Pattern, int> result = count(g, patterns);

(e) Motif Counting

void found(Match m) {
mapPattern(m, True);
stopExploration();
}
DataGraph g = loadGraph("input.graph");
Pattern p = generateClique (desiredSize);
Map<Pattern, bool> result = match(g, p, found);

(f) Clique Existence

Figure 5.4: Graph mining use cases in PEREGRINE’s pattern-aware programming model.
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5.3.2 Pattern-Aware Mining Programs in Peregrine

Figureshows PEREGRINE programs for motif counting, frequent subgraph mining (FSM),
clique counting, pattern matching, an existence query for global clustering coefficient bound,
and an existence query for k-sized clique. All the programs first express patterns by dynam-
ically generating them or by loading them from external source. Then they invoke PERE-
GRINE engine to find (match()) and process matches of those patterns. For every match
for the pattern, user-defined function (e.g., updateSupport (), countAndCheck(), found (),
etc.) gets invoked to perform desired analysis. The count () function is a syntactic sugar and
is equivalent to match() with a function that increments a counter. Most of the programs

are straightforward; we discuss FSM and existence queries in more detail.

FSM: Anti-Monotonicity & Label Discovery

FSM leverages anti-monotonicity in support measures (discussed in Section . PERE-
GRINE natively provides MNI support computation where it internally constructs the do-
main of patterns, i.e., a table mapping vertices in ¢ to those in p (similar to [2]). After
exploration ends for a single iteration, the support measure maintained by PEREGRINE can
be directly used to prune infrequent patterns using a threshold, as shown in Figure[5.4a], and
only the remaining frequent patterns are then programmatically extended to be explored.

Before finding the first small frequent labeled patterns, the FSM program has no infor-
mation about which labelings are frequent. PEREGRINE provides dynamic label discovery
by starting with unlabeled (or partially labeled) patterns as input and returning labeled
matches. Hence, the FSM program in Figure first starts with unlabeled patterns of size
2, and discovers frequent labeled patterns. It then iteratively extends the frequent labeled

patterns with unlabeled vertices to discover frequent labeled patterns of larger sizes.

Existence Queries

Existence queries allow quickly verifying whether certain structural properties hold within
a given data graph. PEREGRINE allows dynamically stopping exploration when the required
conditions get satisfied.

Figureshows a PEREGRINE program to verify if the global clustering coefficient [128]
of graph g is above a certain bound. The global clustering coefficient is the ratio of three
times the number of triangles and the number of triplets (all connected subgraphs with three
vertices, including duplicates) in g. The number of triplets is equal to twice the number
of edge-induced 3-star matches since the endpoints of a 3-star are symmetric. Hence, the
program quickly computes the number of 3-stars, and then starts counting triangles. During
exploration, if the number of triangles reaches the requisite number to exceed the bound,

exploration stops immediately.
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ExplorationPlan generatePlan(Pattern p) {
partialOrders = breakSymmetries(p);
vc = minConnectedVertexCover (p);
pc = vertexInducedSubgraph(vc, p);
matchingOrders = computeMatchingOrders (pc, partialOrders);
return (pc, partialOrders, matchingOrders);

Figure 5.5: Computing exploration plan.
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Figure 5.6: Example of a pattern graph and a data graph.

Figure shows PEREGRINE program to check whether a clique of a certain size is

present in g. As soon as the exploration finds at least one match, it stops and returns True.

5.4 Pattern-Aware Matching Engine

PEREGRINE is pattern-aware, and hence, it directly finds patterns in any given data graph.
In this section, we discuss our core pattern matching engine that directly finds canonical
subgraphs from a given vertex in the data graph. In Section we will use this engine to
build PEREGRINE. For simplicity, we assume the data graph and the pattern are unlabeled.

5.4.1 Directly Matching A Given Pattern

To avoid the overheads of a straightforward exhaustive search, we develop our pattern
matching solution based on well-established techniques [93, 33], [123]. Since patterns are
much smaller than the data graph, we analyze the given pattern to develop an exploration
plan. This plan guides the data graph exploration to ensure generated matches are unique
up to automorphism.

Figure [5.5] shows how the exploration plan is computed from a given pattern p. First, to
avoid non-canonical matches we break the symmetries of p by enforcing a partial ordering on
matched vertices [93]. For our example pattern in Figure we obtain the partial ordering
u < ug and ug < ug.

In the next step, we compute the core of p (called pc) as the subgraph induced by its

minimum connected vertex coverﬂ Given a match m for po, all matches of p which contain

TA connected vertex cover is a subset of connected vertices that covers all edges.
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m can be computed from the adjacency lists of vertices in m. In our example, pc is the
subgraph induced by us and uy.

To simplify the problem of matching pco, we generate matching orders to direct our
exploration in the data graph. A matching order is a graph representing an ordered view
of pc. The vertices of the matching order are totally-ordered such that the partial ordering
of V(p) restricted to V(p¢c) is maintained. This allows matching pc by traversing vertices
with increasing vertex ids without canonicality checks.

We compute matching orders by enumerating all sequences of vertices in pc that meet
the partial ordering, and for each sequence we create a copy of pc where the id of each
vertex is remapped to its position in the sequence. Then, we discard duplicate matching
orders. For our example pattern (Figure , its core substructure has only one valid vertex
sequence, {u2,u4}, so we obtain only one matching order. Note that there can be multiple
matching orders for a given pc depending on the partial orders. We call the i** matching
order pjy;.

Thus, to match pe it suffices to match its matching orders pps;. A match for pys; results
in 1 match for pc per valid vertex sequence. In our example, a match for pysq, say {ve, v3},
is converted to a single match for po, vo — w1 — w1, v3 = wo — ue.

It is important to note that the exploration plan is generated by analyzing the pattern
graph only, i.e., all the computations explained above are applied on p (and its derivatives).

Hence, exploration plans are computed quickly (often in less than half a millisecond).

5.4.2 Matching Under Extended Subgraph Isomorphism

In this section, we describe how anti-edge and anti-vertex constraints described in Chapter
are handled by the PEREGRINE matching engine, how each construct interacts affects the

pattern core, and finally how symmetries are broken in their presence.

Matching Anti-Edges. To enforce an anti-edge constraint, we perform a set difference
between the adjacency lists of its endpoints. Ex. 1 in Figure shows an example pattern
p with an anti-edge and a data graph g. If x matches a and w matches b, the candidates for
d are the elements of adj(w) \ adj(x).

To perform the set difference, we need to ensure that one of the vertices of the anti-edge
is already matched so that its adjacency list is available. Hence, when computing the vertex

cover we also cover the anti-edge by including one of its endpoints.
Matching Anti-Vertices. The anti-vertex constraint can only be verified after the com-

mon neighbours of an anti-vertex’s neighbour have been matched. Thus, we perform the

check after all standard vertices are already matched.
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No. | Pattern p | Graph g | Match Set £,(g,p) | Automorphisms
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Figure 5.7: Anti-Edge and Anti-Vertex Examples.

For example, consider Ex. 2 in Figure with anti-vertex d. If w, x, y in ¢ match a, b,

c respectively, then we verify the anti-vertex constraint for d as follows:

(adj() \ {y}) N (adj(y) \ {x}) = @

In this case, since x and y do not have a common neighbour, w-x-y and w-y-x are valid
matches. On the other hand, in Ex. 3, the anti-vertex d disallows matching y in g with
¢, since adj(y) contains a valid candidate z. Since anti-vertices do not participate while
matching regular vertices and edges, we keep the pattern core po the same as the core

pattern when anti-vertices are removed.

Symmetry-Breaking with Anti-Edges & Anti-Vertices. Given the definition of au-
tomorphism in Section it may seem that anti-edges and anti-vertices should be ignored
when generating partial orders on standard vertices in a pattern p. However, ignoring anti-
edges and anti-vertices can lead to the situation where only part of a given match’s auto-
morphism group is a valid match under extended subgraph isomorphism. This is undesirable
because the partial orders generated without knowledge of anti-edges or anti-vertices may

prune the only automorphisms that are valid matches.

Example 5.4.1. Consider the following examples where ignoring anti-edges or anti-vertices,

respectively, results in missing the desired match.

1. Anti-edges. Consider Ex. 1 in Figure and suppose anti-edges are ignored for the
purposes of symmetry breaking. Suppose the partial ordering on p is a < b < d, and
a < c. Then note that the only match in &, (g, p) violates this ordering, as x > w. The
other automorphism of that match satisfies the partial ordering but fails the anti-edge

constraint since w and z are adjacent.
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2. Anti-vertices. Consider Ex. 3 in Figure[5.7]and suppose anti-vertices are ignored for the
purposes of symmetry breaking. If the partial ordering on p is chosen to be b < c, then
the sole match violates it, since y > x. Similar to the anti-edge example, the other
automorphism satisfies the partial ordering but violates the anti-vertex constraint

since y and z are adjacent.

Therefore, to avoid the above situations, PEREGRINE treats anti-edges and anti-vertices
as standard edges and vertices for the purposes of symmetry breaking, but with a placeholder
label to distinguish them from the original standard edges/vertices. In this manner, anti-
edges and anti-vertices disrupt the symmetries between standard edges and vertices and
thereby relax the partial orders. Continuing the previous examples, this means in Ex. 1 the
partial ordering on p becomes a < d and b < ¢, which the match satisfies. Likewise, in Ex.
3, the partial ordering on p vanishes, since b and ¢ are no longer symmetric since d is only
adjacent to c, preventing the match from being pruned.

Crucially, including anti-edges when generating partial orders does not affect vertex-
induced patterns. As the following result shows, despite containing anti-edges, vertex-

induced patterns end up with the same partial ordering as their edge-induced counterparts.

Theorem 5.4.1. Let pP be an edge-induced pattern with no anti-edges, and let p¥ be the
vertez-induced pattern obtained by adding anti-edges to every pair of vertices in p¥ which

are not adjacent. Then p¥ and p¥ have the same partial ordering.

Proof. Partial orders are generated by breaking the symmetries of a pattern: adding con-
straints between pattern vertices until only one automorphism of the pattern remains. By
treating anti-edges in p" as standard edges with a different labeling, the symmetry breaking
algorithm considers the automorphisms of p" to preserve anti-edge relationships as well as
edge relationships. We prove the theorem by showing that the symmetry breaking algorithm
views p¥ and p¥ as having the same automorphisms.

Remark that due to the difference in labeling, anti-edges can never be mapped to stan-
dard edges by one of these automorphisms, and vice versa. Thus, the automorphisms of p¥
according to the symmetry breaking algorithm consist of the automorphisms of the pattern
formed by the standard edges of p¥, i.e., p¥, intersected with the automorphisms of the
pattern formed by the anti-edges of p¥, i.e., the complement of pE]ﬂ But it is well-known
that a graph and its complement have the same automorphism group [26]. Therefore, the
symmetry breaking algorithm will view the automorphisms of pV as the automorphisms of
pF. O

TThe complement of a graph g is a graph h such that two distinct vertices of h are adjacent if and
only if they are not adjacent in g. To generate the complement of g, edges are added between every pair of
non-adjacent vertices, and all edges that previously existed are removed.
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5.4.3 Neighbourhood Groups

We observe that sets of non-core vertices with identical neighbourhoods exhibit useful prop-
erties that further enable PEREGRINE to avoid redundant computation and reduce the match
enumeration depth. PEREGRINE collects such vertices into neighbourhood groups, which it
leverages for several important optimizations. For example, p, has one neighbourhood group
{u1,us}, while in p, there are two neighbourhood groups {us} and {us}, as the non-core

vertices are adjacent to different core vertices.

Candidate Sets per Neighbourhood Group

Since the vertices in a neighbourhood group have the same core neighbours, they also have
the same candidate matches. In p,, the non-core vertices vertices u; and us are both adjacent
to ug and w4, and hence have the same candidate set. PEREGRINE computes candidate sets
per neighbourhood group instead of per non-core vertex to avoid performing duplicate

operations for each member of a neighbourhood group.

Reducing Match Enumeration Depth

We make an important observation about the vertices within a neighbourhood group.
Namely, the vertices in a neighbourhood group are symmetric to each other. We exploit
these symmetries to efficiently enumerate matches instead of the traditional DFS enumera-
tion process that iteratively maps the candidates for each non-core vertex and backtracks.

In unlabeled patterns, the partial ordering of the pattern restricted to a neighbourhood
group is a total ordering. For example, the neighbourhood group {u1, us} is totally ordered
due to the condition u; < us. In labeled patterns, each subset of the neighbourhood group
vertices with the same labels will be totally ordered. For ease of explanation, we use the
term match group to refer to a totally ordered subset of a neighbourhood group in labeled
patterns, and an entire neighbourhood group in unlabeled patterns.

This allows us to break up enumeration into several mostly independent stages. As the
elements of a match group are ordered and there are no orderings between match groups, we
can map the elements of an individual match group quickly in tight loops with few branches.
Importantly, vertices in separate neighbourhood groups are not symmetric, so there are no
checks for partial orders across groups. The only dependence outside a match group is
to avoid re-mapping data vertices that have already been matched in m. We proceed to
map one match group at a time in depth-first manner. By using match groups, the depth of

exploration is reduced from the number of non-core vertices to the number of match groups.

5.4.4 Match Groups & Fast Paths

With match groups enabled in PEREGRINE, we taxonomize patterns into different classes

based on the number of match groups they contain. By doing so, fast paths can be devel-
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oped for different classes to skip certain depth-first exploration steps. PEREGRINE currently
incorporates two fast paths, one for the common case of a single match group, and another
for the common case of two match groups. From our example patterns, p, follows the former

fast path, and p; follows the latter.

Single Match Group

When there is a single match group containing k vertices, there is no need for any further
depth-first exploration. It remains only to enumerate all unique k-tuples from a single vector.
We can also skip checking whether vertices in m are present in the candidate set for the
match group, since all core vertices must be adjacent to the members of the match group,
otherwise there would be more than one.

When the graph mining use case only requires the number of pattern instances, the

count can be computed in constant time as (‘2‘) where A is the candidate set for the match

group.

Two Match Groups

When there are two match groups, enumeration requires a Cartesian product of the sets
of unique tuples representing matches for vertices in each group, subtracting any overlap.
For example, consider py. Each of its non-core vertices represents a separate match group.
Suppose ug and us have candidate sets A and B, respectively. Then the matches for the

non-core vertices are precisely the pairs:
Ax B\{(v,v):ve AN B}

Even though this requires an additional set intersection and an additional set difference to
account for overlaps, directly computing this set is much faster than a general depth-first
exploration.

To count the matches instead of enumerating, PEREGRINE simply computes the cardinal-

ity of the set directly. For example, the cardinality of the above set is simply |A|-|B|—|ANB].

Three+ Match Groups

The approach for two match groups generalizes to larger numbers of match groups as well.
However, the number of additional set operations required to remove overlaps grows combi-
natorially with the number of match groups. In a pattern with k£ match groups, it requires
Zf:z (lf) additional set intersections and just as many set differences. This leads to dimin-
ishing returns after two match groups, and therefore when there are three or more match

groups PEREGRINE simply traverses them in depth-first fashion as described previously.
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void matchFrom(Match m, Pattern p, Func f, MatchingOrder mo, PartialOrder
po, int i) {
if (i > [V(pe)) {
// remaps m as in Section , before completing %t
// and invoking the wuser’s callback f()
completeMatch(m, p, £, po, 1);
} else {
for (v in getExtensionCandidates(mo, po, 1)) {
matchFrom(m+v, p, f, mo, po, i+1);
}
}
}

AggregationVal match(Graph g, Pattern p, Func f) {
Aggregator a;
(pc, partialOrder, matchingOrders) = generatePlan(p);
parallel for (v in g) {
for (matchingOrder in matchingOrders) {
matchFrom({v}, p, f, matchingOrder,
partialOrders, 1);
}
}

return a.result();

Figure 5.8: Pattern-Aware Processing Model.
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Figure 5.9: Pattern-guided exploration in PEREGRINE for pattern and data graph in Fig-
ure with matching order high-to-low.

5.5 Peregrine: Pattern-Aware Mining

We will now discuss how PEREGRINE performs pattern-aware mining using the matching

engine presented in Section

5.5.1 Pattern-Aware Processing Model

Mining in PEREGRINE is achieved by matching patterns starting from each vertex and
invoking the user function to process those patterns. Hence, a task in PEREGRINE is defined
as the data vertex where the matching process begins. As shown in Figure each mining
task takes a start vertex and the exploration plan generated in Section (matching orders,
partial orders, pattern core pc). From the starting vertex, we recursively match vertices in

the matching order. At each recursion level, a data vertex is matched to a matching order
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vertex. To avoid non-canonical matches, we maintain sorted adjacency lists and use binary
search to generate candidate sets comprised only of vertices that meet the total ordering.

Once a matching order is fully matched, it is converted to matches for pc. Matches for po
are then completed by performing set intersections (for standard edges) and set differences
(for anti-edges) on sections of adjacency lists that satisfy the partial orders. Each completed
match is passed to a user-defined callback for further processing. Figure[5.9|shows a complete
exploration example.

Note that our processing model doesn’t incur expensive isomorphism and canonicality
checks for every match in the data graph, while simultaneously avoiding mis-matches and
only exploring subgraphs that match the given pattern. Furthermore, tasks in our processing
model are independent of each other since explorations starting from two different vertices
do not require any coordination. Threads dynamically pick up new tasks when they finish

their current ones.

5.5.2 Early Pruning for Dynamic Load Balancing

While a matching order enforces a total ordering on the data vertices matching pc, there
is flexibility in the order in which its vertices are matched. To reduce the load imbalance
across our matching tasks, we: (a) follow matching orders high-to-low, e.g. in our example in
Figure we match wy before wy; and, (b) order vertices by their degree such that v; < v;
in the data graph if and only if degree(v;) < degree(v;).

High-degree vertices have fewer neighbours with degrees higher than or equal to their
own, so the degree-based ordering ensures that when a high-degree vertex is matched to
wa, only those few neighbours can be matched to w;. Thus, explorations of neighbours with
lower degrees are pruned. Note that the total number of matches generated remains the
same; the high-to-low matching order traversal, along with degree-based vertex ordering,
reduces the workload imbalance of matching across high-degree and low-degree vertices
by dynamically pruning more explorations from high-degree tasks while enabling those
explorations in low-degree tasks.

Finally, it is important to note that this process does not ‘eliminate’ workload imbalance
simply because the mining workload is dynamic and depends on the pattern and data graphs.
Hence, to avoid stragglers and maximize parallelism, we process tasks in the order defined

by the degree of the starting vertex, beginning with the highest-degree vertices.

5.5.3 Early Termination for Existence Queries

For existence queries, PEREGRINE allows actively monitoring the required conditions so
that the exploration process terminates as quickly as possible. When the matching thread
observes the required conditions, the user function calls stopExploration() to notify other

matching threads. Threads monitor their notifications periodically while matching, and
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when a notification is observed, the thread-local values computed up to that point are

aggregated and returned to the user.

5.5.4 On-the-fly Aggregation

PEREGRINE performs on-the-fly aggregation to provide global updates as mining progresses.
This is useful for early termination and for use cases like FSM where patterns that meet
the support threshold can be deemed frequent while matching continues for other patterns.

We achieve this using an asynchronous aggregator thread that periodically performs
aggregation as values arrive from threads. The matching threads swap the global aggregation
value with the local aggregation value and set a flag to indicate that new thread-local
aggregation values are available for aggregation. The aggregator thread blocks until all
thread-local aggregation values become available, after which it performs the aggregation
and resets the flag to indicate that the global aggregation value is available. With this

design, our matching threads remain non-blocking to retain high matching throughput.

5.5.5 Implementation Details

PEREGRINE is implemented in C++ where concurrent threads operate on exploration tasks,
each starting at a different vertex in the data graph. The data graph is represented using
adjacency lists, and the tasks are distributed dynamically using a shared atomic counter
indicating the next vertex to be processed. To minimize coordination, threads maintain
information regarding their exploration tasks, including candidate sets for each pattern
vertex as exploration proceeds.

PEREGRINE provides native computation of support values for frequency-based mining
tasks like FSM. Domains are implemented as a vector of bitmaps representing the data
vertices that can be mapped to each pattern vertex. They are aggregated by merging their
contents via logical-or. To scale to large datasets, we use compressed Roaring bitmaps [43],

which are more memory efficient than dense bitmaps.

5.6 Evaluation

We evaluate the performance of PEREGRINE on a wide variety of graph mining applications
and compare the results with the state-of-the-art general purpose graph mining systems ﬂ
Fractal [77], Arabesque [205], RStream [219] and G-Miner [45].

5.6.1 Experimental Setup

System. All experiments were conducted on c5.4xlarge and c5.metal Amazon EC2

instances. Most experiments use c5.4xlarge, with an Intel Xeon Platinum 8124M CPU

"We could not evaluate AutoMine [146] directly since its source code is not available.
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Max. Avg.

G V@l E@ el R
(MI) MiCo [82] 100K 1M 29 96637 21.6
(PA) Patents [100]

|~ Unlabeled 3.7M 6M 793 10

I~ Labeled 2.7TM 13M 37 789 10
(YT) YouTube [55] 6.9M 44M 38 4039 12
(OK) Orkut [225] M 117TM — 33133 76
(FR) Friendster [225] 65M 1.8B — 5214 55

Table 5.2: Real-world graphs used in evaluation.
'—’ indicates unlabeled graph.

I

p;

Figure 5.10: Patterns used in evaluation.

containing 8 physical cores (16 logical cores with hyper-threading), 32GB RAM, and 30GB
SSD. Fractal (FCL), Arabesque (ABQ) and G-Miner (GM) were evaluated using both a
cluster of 8 nodes (denoted by the suffix ‘-8’), as well as in single node configuration (denoted
by the suffix ‘-1).

RStream was evaluated on a c5.4xlarge (RS-16) as well as a ¢c6.metal (RS-96) equipped
with an Intel Xeon Scalable Processor containing 48 physical cores (96 logical cores with
hyper-threading), and 192GB RAM. Both instances were provisioned with a 500GB SSD.

In all performance comparisons, we ran PEREGRINE on a c5.4xlarge, and we used

c5.metal to study PEREGRINE’s scalability and resource utilization.

Datasets. Table lists the data graphs used in our evaluation. MiCo (MI) is a co-
authorship graph labeled with each author’s research field. Patents (PA) is a patent citation
graph. In the labeled version, each patent is labeled with the year it was granted. Youtube
(YT) consists of videos crawled by [55] from 2007-2008, with edges between related videos.
Videos are labeled according to their ratings, as in [77]. Orkut (OK) and Friendster (FR) are
unlabeled social network graphs where edges represent friendships between users. MiCo and
labeled Patents have been used by previous systems [205, [77, 219] to evaluate FSM while
Orkut and Friendster were used by [45]. Except for FSM and labeled pattern matching, all

experiments on Patents use its larger, unlabeled version.

Applications. We evaluated PEREGRINE on a wide array of applications: counting motifs
with 3 and 4 vertices, labeled 3- and 4-motifs; counting k-cliques, for k ranging from 3 to

5; FSM with patterns of 3 edges on labeled datasets using various supports; matching the
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patterns shown in Figure [5.10} and checking the existence of 14-cliques. We selected the
patterns in Figure to cover all the patterns used in [77] and [45]; note that patterns
like triangles and empty squares are covered via applications like cliques and motifs. Since
G-Miner’s pattern matching program is specific to labeled py (in Figure, we used labels
on po for all the systems to enable direct comparison. To match it on Orkut and Friendster
graphs, which are unlabeled, we added synthetic labels (integers 1-6 as done in [45]) with

uniform probability.

5.6.2 Comparison with Breadth-First Enumeration

Table compares PEREGRINE’s performance with Arabesque and RStream on motif-
counting, clique-counting, and FSM (these systems do not support pattern matching). As
we can see, PEREGRINE outperforms the breadth-first systems by at least an order of magni-
tude on every application except FSM. RStream, despite being an out-of-core system, runs
out of memory during FSM computations because of the massive amounts of aggregation
information, as well as during 4- and 5-cliques on MiCo where it could not handle the size
of a single expansion step.

It was interesting to observe that Arabesque performed better in single-node mode
compared to 8-node configuration across all experiments except FSM on Patents, where it
ran out of memory. This is because its breadth-first exploration generates large amounts of
partial matches which must be synchronized across the entire cluster between supersteps,
incurring high communication costs that impact its scalability.

When support thresholds are high, Arabesque on 8 nodes computes FSM more quickly
than PEREGRINE. This is because its breadth-first strategy leverages high parallelism when
there are few frequent patterns to explore and aggregate. However, this approach is sen-
sitive to the support threshold, which stops Arabesque from scaling to lower threshold
values where there are more frequent patterns. In these scenarios Arabesque simply fails
due to the memory burden of maintaining the vast amount of intermediate matches and
aggregation values. We suspect that even with more main memory per node, the intermedi-
ate computations (canonicality, isomorphism, etc.) for each individual match in Arabesque
would significantly limit its performance. Since PEREGRINE is pattern-aware, it only needs
to maintain aggregation values for the patterns it is currently matching, allowing it to scale

to inputs that yield many frequent patterns.

5.6.3 Comparison with Depth-First Enumeration

Table[5.4]compares PEREGRINE’s performance with Fractal on motif-counting, clique-counting,
FSM, and pattern matching. As we can see, PEREGRINE is faster than Fractal by at least
an order of magnitude across most of the applications. For instance, 4-cliques on Patents
finished in less than a second on PEREGRINE whereas Fractal took over 200 seconds in both

cluster and single-node configurations.
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Arabesque RStream

App G |PEREGRINE ABQ-8 ABQ-1| RS-96 RS-16

3-Motifs MI 0.12] 158.05 39.05| 51.83 252.74
PA 3.10| 870.70 525.49|2685.45 2186.93
OK 17.90 - / /
FR|  370.64 - / /
4-Motifs MI 6.74 — — / /
PA 12.04 S — / X
OK| 6156.10 - / /
2K-FSM  MI 380.813418.25 821.60 X —
3K-FSM MI 279.74|3520.82 784.27 X —
4K-FSM MI 250.68|3514.97 779.75 X —
20K-FSM PA 859.41 — —|1757.69 —
21K-FSM PA 647.97 — —|1711.87 —
22K-FSM PA 507.56|342.63 —11626.53 —
23K-FSM PA 402.57|299.12 —11936.92 —
3-Cliques MI 0.05| 18.62 5.98 7.34 11.32
PA 0.59| 155.55 87.26 8.40 11.97
OK 13.75 — —| 986.20 1643.10
FR 296.99 — — / /
4-Cliques MI 2.02|1598.09 353.37| 266.61 —
PA 0.90| 249.38 107.02| 105.00 181.30
OK|  281.47 - = / /
FR 1337.77 — — / /
5-Cliques MI 89.60 X — — —
PA 1.12] 352.64 122.09| 145.00 237.90
OK 3182.56 — — / /
FR| 4214.72 - / /

Table 5.3: Execution times (in seconds) for PEREGRINE, Arabesque [205] and
RStream [219).
%" indicates the execution did not finish within 5 hours.
'—’ indicates the system ran out of memory.
’/? indicates the system ran out of disk space.
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Fractal

App G | PEREGRINE FCL-8  FCL-1
3-Motifs  MI 0.12 22.13 17.11
PA 3.10 | 231.95 214.34

OK 17.90 — —

FR 370.64 — —

4-Motifs  MI 6.74 78.66  420.67
PA 12.04 | 362.19 742.35

OK 6156.10 — —

2K-FSM  MI 380.81 | 154.47  675.98
3K-FSM  MI 279.74 | 154.74  680.33
4K-FSM  MI 250.68 | 144.34  663.26
20K-FSM  PA 851.41 X —
21K-FSM  PA 647.97 X —
22K-FSM  PA 507.56 X —
23K-FSM  PA 402.57 | 451.18 —
3-Cliques MI 0.05 18.71 17.21
PA 0.59 | 232.60 216.76

OK 13.75 — —

FR 296.99 — —

4-Cliques  MI 2.02 25.77 34.79
PA 0.90 | 237.64  224.50

OK 281.47 — —

FR 1337.77 — —

5-Cliques MI 89.60 | 181.30  904.65
PA 1.12 | 266.88 217.30

OK 3182.56 — —
FR 4214.72 — —

Match p;  MI 0.12 24.76 36.02
PA 0.84 | 235.72  189.03
OK 38.97 — —
FR 824.62 — —
Match po  MI 0.03 22.11 16.85
PA 1.07 | 260.15  202.23
OK 474.09 — —
FR 18.09 — —
Match ps  MI 19.93 | 181.76 1288.94
PA 13.41 30.18 69.33
OK 13292.77 — —
Match py MI 12.29 | 12099 789.81

PA 2.23 25.58 21.63
OK 1569.73 — —
FR 7057.40 — —

Match ps  MI 14.94 56.51  345.35
PA 1.89 25.30 17.39
OK 1381.03 — —
FR 6726.51 — —

Match pg  MI 65.26 X X
PA 27.94 | 210.04 205.39

Table 5.4: Execution times (in seconds) for PEREGRINE and Fractal [77].
'—’ indicates the system ran out of memory.
"%’ indicates the execution did not finish within 5 hours.
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Given equal resources (i.e., on a single node), FSM on MiCo is up to 2.6x faster on
PEREGRINE compared to that on Fractal. Furthermore, PEREGRINE scales to the larger
dataset while Fractal does not. Even with 8 nodes, Fractal only outperforms PEREGRINE
on the small MiCo graph, and cannot handle the Patents workload except for very high
support thresholds, where there is less work to be done; there too, PEREGRINE executes
faster than Fractal.

Similar to Arabesque, Fractal’s pattern-unawareness requires it to maintain global aggre-
gation values throughout its computation. In FSM, the aggregation values consume O(|V])
memory per vertex in each pattern in the worst case, and thus quickly become a scalability
bottleneck. On the other hand, PEREGRINE only needs to maintain aggregation values for
the current patterns being matched, which allows it to achieve comparable performance and
superior scalability while matching up to 15,817 patterns on MiCo and 6,739 patterns on
Patents.

5.6.4 Comparison with Purpose-Built Algorithms

G-Miner is a general-purpose subgraph-centric system that targets expert users to imple-
ment the mining algorithms using a low-level subgraph data structure. Since expressing
common mining algorithms requires domain expertise, we only evaluated the applications
that are already implemented in G-Miner: 3-clique counting and pattern matching on po
(pattern matching for other patterns is not supported). This experiment serves to showcase
how PEREGRINE compares to custom algorithms for matching specific patterns.

Table[5.5| compares PEREGRINE’s performance with G-Miner. As we can see, PEREGRINE
is 3x to 77x faster than G-Miner when counting 3-cliques even though G-Miner implements
an algorithm designed specifically to count 3-cliques. When matching ps, PEREGRINE is 6x
to 131x faster on MiCo and Patents. On Orkut, however, G-Miner performs better on
finding po; this is because G-Miner indexes vertices by labels when preprocessing the data
graph, whereas PEREGRINE discovers labels dynamically. Due to these indexes, G-Miner
could not handle Friendster even with 240GB disk space on the cluster.
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App G | PEREGRINE G-Miner
GM-8 GM-1
3-Cliques MI 0.05 3.79 3.86
PA 0.59 7.91 8.93
OK 13.75 44.26 62.65
FR 296.99 / /
Match po  MI 0.03 3.67 3.95
PA 1.07 6.84 9.80
OK 474.09 | 145.00 396.72
FR 18.09 / /

Table 5.5: Execution times (in seconds) for PEREGRINE and G-Miner [45].
’/” indicates the system ran out of disk space.

Existence | Anti-Vertex | Anti-Edge
G .
14-Clique D7 P8
MI 0.07 0.65 6.92
PA 3.95 0.67 1.69
OK 4.08 56.06 879.01
FR 50.39 470.21 4017.15

Table 5.6: PEREGRINE execution times (in seconds) for matching with an anti-vertex (pr),
matching with an anti-edge (psg), and 14-clique existence query.

5.6.5 Mining with Constraints in Peregrine

We evaluate PEREGRINE on mining tasks with structural constraints. We match a pattern
containing an anti-vertex (p7), one containing an anti-edge (ps), and perform an existence

query of a 14-clique. The results are show in Table [5.6

Mining with Anti-Vertices. Pattern p; expresses a maximal clique of size 3 (triangle)
using a fully-connected anti-vertex, i.e., it matches all triangles that are not contained in
a 4-clique. While satisfying the anti-vertex constraint requires computing set-intersections
across all vertices of the triangle, PEREGRINE takes less than a minute on Orkut, and under

eight minutes on the billion scale Friendster graph.

Mining with Anti-Edges. Pattern pg represents a vertex-induced chordal square using
an anti-edge constraint. Satisfying the anti-edge constraint is computationally demanding,
since it requires computing set differences of adjacency lists, which is twice as many opera-
tions as the sum of the adjacency list sizes. Nevertheless, PEREGRINE still easily completes

it on all the datasets.
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Figure 5.11: Execution times (in seconds) for PEREGRINE with (PRG) and without (PRG-
U) symmetry breaking. PRG-U could not finish matching any of the 4-motif patterns on
Orkut within 5 hours.

Existence Query. The goal of this query is to determine whether a 14-clique exists in
the data graph. PEREGRINE stops exploration immediately after finding an instance of 14-
clique. We observe that Patents and Orkut performed similarly; this is because the rarer
the target pattern for an existence query, the longer it takes to find it. Patents does not
contain a 14-clique, so the entire graph was searched, but in the much larger and denser
Orkut graph, a 14-clique gets found quickly during exploration. Friendster is both large
and sparse, and hence, 14-cliques are rare. Furthermore, since 14-clique is a large pattern,

several partial explorations do not lead to a complete 14-clique.

5.6.6 Peregrine’s Pattern-Aware Runtime

We evaluate the pattern-aware techniques in PEREGRINE as evidence for the impact of

application-aware design. The following experiments use the patterns in Figure [5.12

Benefits of Symmetry Breaking Symmetry breaking is a well-studied technique for
subgraph matching that PEREGRINE uses to guide its graph exploration. However, recent
systems like Fractal [77] and AutoMine [146] are not fully pattern-aware and do not leverage
symmetry breaking for common graph mining use cases. We showcase the importance of
symmetry breaking in PEREGRINE by disabling it and running 4-motifs and FSM with low
support thresholds. These are expensive subgraph matching workloads: 4-motifs contains
complex patterns with many matches and FSM involves a large number of patterns to
match. Figure [5.11] summarizes the results.

We observe that symmetry breaking improves performance by an order of magnitude
for 4-motifs on MiCo and Patents. Orkut 4-motifs without symmetry breaking did not even
finish matching even a single size 4 pattern within 5 hours. This shows the importance of
symmetry breaking when scaling to large patterns and large datasets. For instance, Orkut

contains over 22 trillion unique vertex-induced 4-stars, and so without symmetry breaking,

57



SoORNILORP LR
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Figure 5.13: Execution times for pattern matching queries with neighbourhood groups (NG)
and without neighbourhood groups (W/O NG). All times are normalized w.r.t. W/O NG.

the system must process six times that many matches (a 4-star’s automorphisms are the
permutations of its 3 endpoints: resulting in 3! = 6 automorphic subgraphs).

FSM achieves 3x performance improvement through symmetry breaking. This is be-
cause with symmetry breaking, FSM’s expensive aggregation values are only written to
once per unique match in the data graph, whereas the naive approach without symmetry

breaking would incur dozens of redundant write (and read) accesses per unique match.

Neighbourhood Groups. We measure the performance benefits achieved by neighbour-
hood groups. We run pattern matching queries with patterns p; and ps from Figure [5.10
because in both patterns all the non-core vertices are organized in a single neighbourhood
group. Patterns without multiple vertices in a neighbourhood group remain unaffected. We
run the queries on the Patents [100] and YouTube [55] graphs. Patents is a sparse graph with
2.7TM vertices and 13M edges where each edge represents a citation between US patents.
YouTube has 6.9M vertices and 44M edges, where each vertex represents a video and edges
link related videos together. The experiments are performed on an Intel Xeon Gold 3.10GHz
processor, using 16 physical cores with hyperthreading enabled and 32GB RAM.

Figure shows the execution time for PEREGRINE with and without neighbourhood
groups. We observe that PEREGRINE achieves 11-25% better performance when using neigh-
bourhood groups. As expected, with neighbourhood groups enabled PEREGRINE performs

1.5-3x fewer set intersections to match the input patterns. This translates to huge savings:
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Figure 5.14: Execution time for pattern matching queries with match group fast paths (MG)
and without match group fast paths (W/O MG). All times are normalized w.r.t. W/O MG.

for instance, PEREGRINE performs 152M fewer intersections when matching p; on YouTube

when using neighbourhood groups.

Match Groups. To measure the impact of the fast paths for the two pattern types, we
run pattern matching and 4-motif counting with and without the fast paths enabled. For
the pattern matching queries we use two patterns po, ps which have a single match group,
and two patterns py, ps with two match groups. Figure shows the execution times. For
a single match group, the fast path leads to a 1.5-236x speedup for ps and p3, while the
fast path for two match groups leads to a 1.25 — 6x speedup for ps and p5. On YouTube,
the two match group fast path improves performance for ps by 6x and ps by 1.37x despite
requiring 50M and 4B more set intersections for py and ps respectively.

We also observe performance benefits for 4-motif counting, where 4 out of 6 patterns
benefit from fast paths. Overall, 4-motif counting speeds up by 1.6 — 2.7x.

We profile the executions using perf to measure the reduction in branches due to the
fast paths. Figure shows the results. On the YouTube graph, all of ps, ps, ps, ps incur
on average 175x fewer branches during matching with the fast paths enabled, culminating
in 34x fewer branch misses on average. Even though the 4-motif counting query contains
patterns which do not benefit from the optimizations, it still performs 2 — 4.8x fewer

branches and 2.9B fewer mispredictions.
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Figure 5.16: PEREGRINE 4-motif execution time breakdown on Orkut and MiCo.
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Figure 5.17: (a) Scalability (PRG HT = hyper-threaded). (b) CPU utilization (solid) and
memory bandwidth (dashed) for 24 cores (blue), 47 cores (green) and 94 cores (red).

Breakdown on Mining Time. Figure [5.16|shows the ratio of time spent in each stage
of matching during 4-motif execution: finding the range of sorted candidate sets that meet
the pattern’s partial order (PO), performing adjacency list intersections and differences to
match the pattern core (Core) and finally, intersecting the adjacency lists of the pattern
core to complete the match (Non-Core). Some time is also spent on the other requirements
of matching, for example, fetching adjacency lists and mapping vertices (Other).

We observe that the majority of execution is spent intersecting adjacency lists of candi-
date vertices to complete matches. In comparison to the overall execution time, matching
the core pattern is insignificant. This is because the core pattern is matched according to all
valid total orderings of its vertices, and hence, the traversal is fully guided. In contrast, the
non-core vertices may or may not be ordered with respect to each other, and with respect
to the core vertices; so the runtime usually has less guidance when exploring the graph.
Furthermore, in most patterns the core is small and involves fewer intersections than the

non-core Component.

5.6.7 System Characteristics

Scalability. We study PEREGRINE’s scalability by matching pattern p; on Orkut using
c5.metal instance. Note that we do not perform a COST analysis [149] with this experiment
since we already compared PEREGRINE with optimized algorithms in Section and
state-of-the-art serial pattern matching solutions like [210, 102] performed much slower
than our single threaded execution.

Figure shows how PEREGRINE scales as number of threads increase from 1 to 96.
As we can see, PEREGRINE scales linearly until 48 threads, after which speedups increase
gradually. This is mainly because c6.metal has 48 physical cores, and scheduling beyond 48
threads happens with hyper-threading. We verified this effect by alternating how threads get
scheduled across different cores; the dashed lines in Figure show speedups when every
pair of PEREGRINE threads is pinned to two logical CPUs on one physical CPU. As we can
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Figure 5.18: Peak memory usage of different systems across various applications. Tall red
bars represent RStream out of memory errors.

see, with 48 threads but only 24 physical cores, PEREGRINE only achieves a 30x speedup,
whereas with 48 physical cores it achieves a 41 x speedup. Since pattern exploration involves
continuous random memory accesses throughout execution, hyper-threading helps in hiding
memory latencies only up to an extent. Figure [5.17D] verifies this, as memory bandwidth
grows considerably higher when using more cores, though CPU utilization remains similar.

We observe that speedups also decline slightly between 24 cores and 48 cores. This is
because c5.metal has two NUMA nodes, each allocated to 24 physical cores. We measured
remote memory accesses to observe the NUMA effects: when running on 48 cores, cross-

numa memory traffic was 86GB as opposed to only 4.9MB when running on 24 cores.

Resource Utilization. Figure[5.17b|shows CPU utilization and memory bandwidth con-
sumed by PEREGRINE while matching p; on Orkut on c5.metal with 24, 47, and 94 threads.
We reserve a core for profiling to avoid its overhead. We observe that PEREGRINE maintains
high CPU utilization throughout its execution. The memory bandwidth curve increases over
time; as high degree vertices finish processing, low degree vertices do less computation and
incur more memory accesses as they get processed.

Figure [5.18| compares the peak memory usage for PEREGRINE and other systems. For
distributed systems we report the sum of all nodes’ peak memory. PEREGRINE consistently
uses less memory than all the systems, mainly because of its direct pattern-aware exploration
strategy. It is interesting to note that changing the pattern size in cliques and motifs does
not impact PEREGRINE’s memory usage. The usage is high for FSM compared to other

applications due to large domain maps for support calculation.
Load Balancing. Since PEREGRINE threads dynamically pick up tasks as they become

free, we observe near-zero load imbalance while matching p; across all our datasets. The

difference between times taken by threads to finish all of their work was only up to 71 ms.
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5.7 Conclusion

We presented PEREGRINE, a pattern-aware graph mining system that efficiently explores
subgraph structures of interest, and scales to complex graph mining tasks on large graphs.
PEREGRINE uses extended subgraph isomorphism to enable ‘pattern-based programming’
that treats patterns as first class constructs, including support for ANTI-EDGE and ANTI-
VERTEX that express advanced structural constraints on patterns to be matched. This
allows users to directly operate on patterns and easily express complex mining use cases as
‘pattern programs’ on PEREGRINE.

PEREGRINE’s runtime integrates seemingly incompatible application-specific techniques
thanks to its application-aware design philosophy. Our extensive evaluation showed that this
runtime enables PEREGRINE to outperform the existing state-of-the-art by several orders
of magnitude, even when using 8x fewer CPU cores. Furthermore, PEREGRINE successfully
handles resource-intensive graph mining tasks on billion-scale graphs on a single machine,

while the state-of-the-art fails even with a cluster of 8 such machines or access to large

SSDs.
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Chapter 6

Subgraph Morphing: Application
Semantics in a System-Agnostic
Framework

Whereas the previous chapter designed a fully-fledged graph mining system PEREGRINE
using application-aware principles, this chapter takes a fundamentally different approach
and develops a middle-end framework that fits into pattern-based graph mining systems,
using knowledge of application semantics to automatically optimize execution.

We observe that the performance of graph mining applications is not only dependent on
the patterns queried by the application, but is also sensitive to system-level nuances (e.g.,
subgraph matching strategies and optimizations employed) as well as application-level char-
acteristics (e.g., application UDF and aggregation functions). We aim to take advantage of
the performance difference when mining seemingly similar patterns by exploiting the struc-
tural similarities across different patterns. In general, dramatic performance improvements
can be achieved if we could devise a general technique that can infer the results of a pattern
for which it is expensive to find matches directly (i.e., hard pattern) from those of other
patterns where matching is less expensive (i.e., easy pattern).

We propose SUBGRAPH MORPHING for graph mining systems — a generic technique that
enables structure-aware algebra over patterns to morph the queried patterns into a set of
alternative patterns, which can then be used to quickly compute accurate results for the

original patterns. We make the following key contributions in this chapter.

o We expose key factors that impact the performance of graph mining (Section . Our
observations from benchmarking various graph mining workloads across multiple graph
mining systems show that the nature of input workloads (input patterns and data graph
from the application), the pattern matching engines in graph mining systems, and the
processing requirements of mining applications, all together contribute to the final per-
formance. We envision these observations will be useful in building intuition for future

research and development on graph mining systems.

64



o We develop the SUBGRAPH MORPHING algebra that shows how patterns can be morphed
with guaranteed correct results (Section . Our algebra is general as it natively incor-
porates morphing with arbitrary aggregation operations from graph mining applications,
and it generates multiple alternative solutions (which we call alternative pattern sets) to
exploit different performance characteristics. With such generality, the system-level and
application-level nuances can be incorporated to improve the overall performance, which

is a key strength of our technique.

o We develop efficient strategies to enable SUBGRAPH MORPHING in practice. A major
challenge is the exponential search space of alternative pattern sets with different benefits.
We generate and navigate through different alternatives methodically using a novel data
structure called S-DAG and a greedy algorithm to select efficient alternative pattern sets
(Section . Our approach is backed by cost models that incorporate all the factors

discussed above while estimating the performance of alternative patterns.

Another challenge is that the results for queried patterns must be inferred from the results
of alternative patterns, which can be tedious for users to perform in application logic. We
develop strategies to seamlessly convert the results by operating on patterns and their
matches only, hence removing the need to modify the application logic (Section . Our
conversion strategies operate efficiently across both the common output modes in graph
mining systems: batched mode where aggregation results are output at the end, and

streaming mode where matching subgraphs are returned as a continuous output stream.

o We demonstrate the generality and effectiveness of SUBGRAPH MORPHING by integrating
it into four state-of-the-art graph mining and subgraph matching systems: PEREGRINE,
AutoMine/GraphZero [146], 145], GraphPi [192], and BigJoin [I7]. Our extensive evalu-
ation on a variety of graph datasets and graph mining applications demonstrates that
SUBGRAPH MORPHING accelerates these systems by up to 34x on PEREGRINE, 10X on
AutoMine/GraphZero, 18x on GraphPi, as well as 13x on BigJoin (Section .

Notation. This chapter deals heavily with the relationships between edge-induced and
vertex-induced patterns. As a convenient notation, vertex-induced patterns are denoted
with a superscript ¥ (e.g., p¥ always refers to a vertex-induced pattern) while edge-induced
patterns are denoted with a superscript ¥ (e.g., pP always refers to an edge-induced pat-
tern). Note that cliques are simultaneously edge- and vertex-induced since there exists an
edge between any pair of vertices (and hence no anti-edge). For any given pattern p, we
refer to p¥ and p" as variants of each other. Throughout the chapter, we omit the super-
script on patterns when the discussion applies to both vertex-induced and edge-induced
patterns. Several patterns can be easily described by their names (e.g., triangle, clique,

w.r.t.). Figure summarizes the common pattern names used in this chapter.
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Figure 6.1: Common pattern names.

6.1 Performance Analysis

This section identifies key factors that impact the performance of graph mining workloads in
order to motivate the need for a generic technique to accelerate arbitrary graph mining work-
loads across different graph mining systems. To understand the performance bottlenecks in
existing systems, we profiled various graph mining workloads on different open-source sys-
tems: PEREGRINE, GraphPi [192], and BigJoin [17] for subgraph matching. Figure[6.2)shows

the profiling results, and we summarize our observations below.

6.1.1 Graph Mining Applications

Figure Figure and Figure show the performance of three graph mining
applications on Peregrine: Frequent Subgraph Mining (FSM), Subgraph Counting (SC) and
Subgraph Matching (SM). These applications differ widely from each other. FSM invokes a
user-defined function (UDF) on each match to compute MNT of patterns, whereas SC does
not invoke any UDF since the system natively performs counting using set optimizations.
SM is between FSM and SC where it lists out the matches using a UDF, but the UDF is
simpler than in FSM.

Observation 1. Since the number of matches grows exponentially with graph size, in-

voking UDF on each match impacts the end-to-end processing time. UDFs become the
main performance bottleneck when they are expensive (as seen for FSM), while simpler

UDFs also influence the processing time by non-trivial amount (as seen for SM).

The above observation is also valid when mining vertex-induced subgraphs using systems
like GraphPi and BigJoin that only perform edge-induced exploration. For these cases, the
edge-induced matches mined by the system are processed using a Filter UDF to prune out
invalid matches (i.e., matches that do not contain all edges induced by their vertices). As
shown in Figure [6.2]d-¢], the Filter UDFs are the main performance bottlenecks, and they
significantly slow down the overall processing compared to when matching edge-induced

subgraphs (which does not require any UDF).

6.1.2 Structure of Patterns

Next, we study the performance of SC and SM (Figure [6.2]b-c]). As expected, the set

operations on adjacency lists (set intersections and differences) take most of the time for

66



M Set Operations #ZDuplicate Avoidance "Materialization BNUDF

MG - IYOIN 0.57s  Jivk 0.47s INRYE
2395 cacliEER 2.86s
TTPREN3.565  EREIEIN9.52s

MI
18h AS|rN2.35s  PAEING.26s
0 50 100 0 25 50 75 100
Time (%) Time (%)
(a) FSM (b) Enumeration

BSystem Time ENFilter UDF

c4C-v 95.7s C4C-v >24h
C4C-E 11.15s C4C-E 214s
TV 123s TV 2680s

TT-E 0.1s TT-E 105s
0 50 100 0 50 100
Time (%) Time (%)

(d) GraphPi (e) BigJoin

0.61s
1.96s
2.77s
1.85s
0 25 50 75 100
Time (%)

(c) Counting

mMI WMG

4S
TT
4S
TT

0 50 100
Time (%)

(f) Counting

Figure 6.2: Profiling graph mining systems. Figures (a-c) show performance breakdown of
FSM, Subgraph Matching and Subgraph Counting on PEREGRINE; (d-e) show performance
breakdown of enumerating matches in GraphPi [192] and BigJoin [I7]; (f) shows the rela-
tive performance of mining patterns on different data graphs in Peregrine (relative w.r.t.
longer execution for each data graph). MG and MI are MAG and MiCo data graphs (see
Figure . 4CL, C4C, TT and 4S are patterns 4-clique, chordal 4-cycle, tailed triangle
and 4-star respectively (see Figure . The suffixes “-V” and “-E” indicate vertex-induced
and edge-induced patterns (e.g., TT-V is vertex-induced tailed triangle).
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SC, while SM also spends time on materializing matches by merging sets of candidate
vertices.

Since graph mining systems analyze the pattern structure to generate customized pattern-
specific matching plans, the structure of the pattern dictates the effectiveness of the sub-
techniques involved in the matching plan (e.g., pruning strategies to account for pattern
symmetries, or different join fast-paths as in Section . Hence, different patterns incur
different amount of set operation and materialization time. While one would expect simi-
lar looking patterns (e.g., same number of vertices) to have similar performance trends, or
denser patterns to be more expensive than sparser patterns with same number of vertices,

no such performance trends are guaranteed. For instance, in Figure [b-c] we can see:

e A 4-star takes more set operation and materialization time than a 4-clique, even though

latter has twice the number of edges than the former (see pattern structures in Figure(6.1)).

e A chordal 4-cycle has only one additional edge over a tailed triangle, but the latter con-

sumes more time for set operation and materialization compared to the former.

Observation 2. As graph mining systems generate pattern-specific matching plans, even
stmilar-looking patterns incur different amounts of set operations and materialization
time, which results in unexpected performance trends across those patterns that are diffi-

cult to justify.

6.1.3 Structure of Data Graphs

Next, we study the performance of mining different patterns on different data graphs. While
mining in larger graphs takes more time (which is expected), the structure of the data graph
impacts the relative performance of mining different patterns. This is visible in Figure [6.2
where mining 4-stars is 25% faster than tailed triangles in MiCo graph, but it is 125% slower
in MAG graph. This is because the graph structure influences how different explorations
proceed or get pruned (e.g., matching order violation), which in turn impacts the amount

of work performed to mine all matches.

Observation 3. The structure of the data graph also influences the mining performance

since it dictates which explorations proceed while others get pruned out.

6.1.4 Graph Mining Systems

Finally, we study the relative performance between graph mining workloads across different
graph mining systems. Since graph mining systems employ different kinds of pattern match-
ing techniques (e.g., matching algorithms) and are implemented and optimized in different

manner (e.g., parallelization strategies), the performance relationships across workloads

68



varies across the systems as well. This is observed when comparing the performance num-
bers in Figure [6.2[b-d] for Peregrine and GraphPi: while the chordal 4-cycle is faster than
a tailed triangle in Peregrine, the performance relation is reverse for GraphPi where tailed

triangle is faster.

Observation 4. The design and implementation choices incorporated in graph mining

systems impacts the relative performance between different graph mining workloads.

6.1.5 Motivation Summary

In summary, the end-to-end processing time is influenced by: (a) the structure of patterns
and the data graph, (b) the matching strategies and optimizations employed by the mining
system, and (c) the processing requirements of the graph mining application (i.e., UDF
calls). More importantly, none of these factors are a clear single variable that should be
optimized over the other, making it difficult to improve the performance of mining systems.

This motivates the need for a general technique that graph mining systems can em-
ploy across various graph mining workloads. SUBGRAPH MORPHING is our general tech-
nique. It first methodically exposes the space of performance opportunities (Section
and then considers the system-level and application-specific nuances to deliver high perfor-
mance across different scenarios (Section and Section [6.4)).

6.2 Subgraph Morphing

This section describes principles of subgraph morphing with illustrative examples, and de-

velops its semantics.

6.2.1 Overview

Subgraph Morphing primarily exploits the structural similarities across different patterns.
The key idea is to morph the input patterns from graph mining applications into alternative
patterns that are less expensive to compute, and then convert the results for those alter-
native patterns into results for the original input patterns. When Subgraph Morphing is
integrated in graph mining systems, their workflow gets enhanced with two new steps (shown
in Figure : pattern transformation and result transformation. Instead of being directly
passed to the execution planner, the input patterns first undergo a pattern transformation
step resulting in alternative patterns. Then, matching plans are computed and followed to
explore matches for the alternative patterns from the input graph. Finally, the results for
alternative patterns are sent through the result transformation step to compute the results
for the original input patterns. Details of pattern transformation and result transformation
will be explained in Section [6.3]and Section [6.4] respectively, and Appendix [B]illustrates the
key steps in SUBGRAPH MORPHING using two graph mining applications. In this section,

we will focus on the semantics of Subgraph Morphing.
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Figure 6.3: Graph mining with Subgraph Morphing.

6.2.2 Intuition & Example

The intuition behind SUBGRAPH MORPHING can be summarized with the following two key

observations.

[P1] A match for an edge-induced pattern p¥ on n vertices is also a match for all of its
subpatterns on these vertices. For example, a match for a 4-clique is also a match for an
edge-induced 4-cycle, since the 4-clique contains all the edges of the 4-cycle. Note that this
observation does not apply to vertex-induced patterns—although a vertex-induced 4-cycle
contains the same four (regular) edges, the additional two anti-edges exclude matches for

4-cliques.

[P2] A match for a vertex-induced pattern p¥ is always a match for the corresponding
edge-induced pattern p¥, but not vice versa—p" matches exactly the edges in p¥ but a

subgraph that matches p¥ may contain additional edges that are against the anti-edges in
1%

p’.
Exzample. These observations indicate that we can logically partition the matches for an
edge-induced pattern into disjoint sets of matches for vertex-induced patterns. For example,
consider a match for the edge-induced 4-cycle. The vertices in this match may have edges
that are in the graph but not present in the pattern. If these edges do not exist, this is
also a match for the vertex-induced 4-cycle (e.g., a-b-c-d in Figure . If there exists
exactly one extra edge, it is a match for the vertex-induced chordal 4-cycle (e.g., d-c-g-f in
Figure [6.4a)). Finally, if there are two extra edges in the match, it is a match for the 4-clique
(e.g., a-d-f-e in Figure . These situations are mutually exclusive since they depend on
specific edges being present or absent.

While the above partitioning enables converting matches, a match for a given pattern
can potentially contain multiple matches for another pattern. For example, a match for the
4-clique contains 3 unique matches for the edge-induced 4-cycle, as shown in Figure
Hence, in order to convert a match for the 4-clique into a match for the 4-cycle, we must

correctly map the 4-clique vertices, using the subgraph isomorphisms, to those of the 4-cycle.
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Figure 6.4: Identifying matches for different patterns.
6.2.3 Semantics

Subgraph Morphing performs structure-aware algebra over patterns (and hence, their matches)
to capture all matches for a given pattern in the input graph by converting the matches of
different (alternative) patterns. One way to find alternative patterns for a given pattern is
to consider its superpatterns because matches of a pattern are guaranteed to contain valid
matches for its subpatterns. Hence, our first idea is to derive the matches of the pattern
using its superpatterns.

Let g € G be a graph and let p € G, be a pattern. Recall that £} (g, p) is the set of all

unique matches for p in g under extended subgraph isomorphism. Then,

ENg.p") = Eg.pY) U U Eg,d") 0", ¢") (6.1)

qFonpP

where ¢¥ D, p¥ indicates the superpatterns ¢ of pattern p” containing same number
of vertices (n), ¢(p”,q¥) captures the set of all subgraph isomorphisms from p¥ to ¢%,
and &7 (g,q") o ¢(p¥, ¢¥) permutes the vertices in each match m € £7(g,¢") according to
subgraph isomorphism from p¥ to ¢¥.

In simple words, given an edge-induced pattern p¥, we start with using the matches
of its vertex-induced variant p"" (observation [P2]). However, since p¥ contains anti-edges
that eliminate some valid matches for p¥, we compensate by using matches for additional
superpatterns, each obtained by replacing anti-edges in p*" one-by-one with true edges (ob-
servation [P1]). This ends up generating an alternative pattern set for p” that contains
all of its vertex-induced superpatterns with the same number of vertices. Since a match
for a superpattern can contain multiple matches for a subpattern (e.g., 4-clique contains
three edge-induced 4-cycles in Figure, we use permutation functions to generate all

the matches of the subpattern. A permutation function converts matches of a superpattern
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[SM-E1]

[SM-E2]

[SM-E3]

[SM-V1]

Figure 6.5: Sample equations resulting from subgraph morphing. [SM-V1] morphs vertex-
induced pattern (left) whereas other equations morph edge-induced patterns. [SM-E1] and
[SM-E2] are directly obtained from Eq. [SM-E3] by recursively substituting in [SM-E1],
and [SM-V1] by adjusting [SM-E2]. The coefficients indicate the numbers of unique matches
resulting from subgraph isomorphism.

into matches for the subpattern based on isomorphic mappings from the subpattern to the
superpattern.

To maintain the flow of exposition, the proof for Eq.[6.1]is deferred to Section[6.2.5 Next,
we focus on the two key aspects that make our SUBGRAPH MORPHING strategy generic:
directly converting arbitrary aggregations results and multiple alternatives for converting

madtches.

Converting Aggregation Results. SUBGRAPH MORPHING can be applied directly on
aggregation results instead of converting the individual matches. By doing so, we can pre-
vent materialization of a significant number of matches, and reduce UDF overheads while
computing aggregations by invoking them on fewer matches.

Let a = (R, ®) denote the aggregation, with v as the map from matches to aggregation
values. For a set of matches £} (g,p) in graph g € G, write a(E}(g,p)) as a shorthand for

@ v(m). The aggregation results can be directly converted as follows (correctness
meE(g.p)

proven in Section :
a(€5(9,p")) = a(€X(9,p" ( D @ (EX(9,4")) s f) (6.2)

o ¢(p ")
where o, is a permute operator for aggregation values to account for the permutations
according to ¢(p, q) (similar to o defined on matches in Eq. [6.1)). The o, operator adjusts
the aggregation value based on a given permutation f in ¢(p,q). The definition of the
permutation function depends on the aggregation operation performed on the matches.
For instance, the permutation function for counting accounts for all unique isomorphic

mappings, which results in multiplying the number of matches of a superpattern by the
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number of unique isomorphic mappings. In FSM, the permutation function permutes the

columns of the MNT table of the match, in a similar manner, based on subgraph isomorphism.

Multiple Alternative Pattern Sets. While Eq. identifies alternative patterns for
edge-induced patterns, we can move in the other direction as well to compute results for
vertex-induced patterns (achieved by rearranging the terms in Eq. to bring £(g,p")
on left-hand side). More importantly, the patterns in the alternative pattern set can be
iteratively substituted with their conversion equations to obtain different alternative pattern
sets. By recursively substituting the patterns with their alternative patterns sets, we can
generate a system of equations representing different alternative pattern sets that can be
used to compute the results for a given query pattern. Additionally, the alternative pattern
sets can contain a combination of vertex-induced and edge-induced patterns by converting
the intermediate aggregations through recursive substitution.

Figure [6.5] shows a few samples of how patterns can be morphed to a given pattern. The
coefficient associated with a pattern indicates the number of unique matches resulting from
subgraph isomorphism (e.g., 4-clique has three 4-cycles, and hence the 4-clique in Equation
[SM-E2] has a coefficient 3). As we can see, [SM-E1] and [SM-E3]| are two different equations
to compute results for the tailed triangle. With different choices for alternative pattern sets,
the pattern query can be optimized by selecting the alternative set for which matches can

be efficiently computed (discussed in Section [6.3).

6.2.4 Significance of Generic Subgraph Morphing

The generic nature of SUBGRAPH MORPHING enables accelerating arbitrary graph mining
applications while also incorporating system-level nuances and application-level character-
istics. For example, system-level nuances were shown to impact the mining workloads dif-
ferently in Section [6.1] causing certain patterns to be faster than others on one system but
slower on another system. In such a situation, alternative patterns sets can be optimized
differently for each individual system by accounting for their relative performance across
different patterns; in our example from observation 4, this would mean choosing tailed
triangle over 4-cycle for GraphPi but not for Peregrine. Similarly, application-level charac-
teristics like application UDF and the structure of the data graph were shown to impact the
query performance in Section Since SUBGRAPH MORPHING enables direct conversion
of aggregation results, the impact of these application-level characteristics can be directly
accounted in choosing the right set of alternative patterns. For example, expensive UDF
calls like filtering each match or computing MNI tables for FSM can be reduced by using
alternative patterns that are expected to generate fewer matches. But on the other hand,
applications that employ inexpensive aggregation operations like counting (system-native)
can benefit from alternative patterns that are expected to incur fewer set operations.

In comparison, counting techniques developed in prior works like [141],[108, 168, 151}, [234]

are inapplicable for general-purpose graph mining systems since they focus on count conver-
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sion rules that are customized for specific types of equations on specific patterns. Hence, they
cannot systematically generate multiple alternative sets for a given query pattern, which
renders them useless as they cannot account for various system-level and application-level
nuances. For instance, blindly converting results from vertex-induced to edge-induced (or
vice-versa) would often be slower than the original query, depending on the system and the

application.

6.2.5 Proofs of Equivalence

This section proves that SUBGRAPH MORPHING preserves equivalent results after trans-

forming input patterns.

Match Conversion. Recall Eq. from Section Let g € G be a graph and let
p € G, be a pattern. Then,

EXg.p") = Eg.0") U U E9,d") 00", q") (6-1)

qEo,pF

where ¢ D, pf indicates the superpatterns ¢ of pattern p¥ containing same number
of vertices (n), ¢(p¥,q"”) captures the set of all subgraph isomorphisms from p? to ¢F,
and £(g,q") o ¢(p”, ¢¥) permutes the vertices in each match m € £*(g,¢") according to
subgraph isomorphism from p to ¢%.

Proof. Since we are proving set equality, we will first show how every match in £ (g, p¥) is
contained in the set on the right-hand side of the equation, and then show that (g, p®)
contains every match from the right-hand side.

Let m be a match in £ (g,p”), and ¢" be the pattern of the subgraph induced by the

image of m. ¢V must have at least as many edges as p”, since it was induced by a match
for p¥.
~ Case 1: If ¢" has the same number of edges as p¥, ¢ is isomorphic to p" and hence
m e & (g,p").
— Case 2: Otherwise, ¢¥ has more edges than p¥. Consider the edge-induced pattern ¢”
corresponding to ¢". ¢ must be a superpattern of p¥, since ¢" has more edges than p¥
but contains all the edges of p”. This means ¢(p”, ¢%) is non-empty. For any f € ¢(p”, ¢¥),
observe that m o f~1: V(¢¥) — V(p¥) — G is a match for ¢V, since V(¢¥) = V(¢") and
q¥ was obtained from the induced pattern ¢". This means m o f~! € £7(g,¢"), and hence
mo f~lo f=me&(g.4")0d(" ¢").

Therefore, we showed £ (g, p¥) is a subset of the right-hand side of the equation. Next,
we will prove that the right-hand side is contained within £ (g, p%).

First, note that a match for p¥ is trivially a match for p¥, since p¥ and p" differ only

in anti-edges, so £ (9.p") < £:(g,p").
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Next, take any match m € £7(g,¢") where ¢¥ D, pP. m is also in £*(g,¢%) by the
same reasoning as above. But then for any f € ¢(p”,q¢"), mo f: V(pF) = V(¢¥) = G is
a match for p¥ since any match for ¢¥ contains all edges required for matching p”. Hence,
EX(9,4") o 0(p”,q") C Ex(g,p").

Taking the union of £ (g,p") and £(g,q") o p(p¥, ¢¥) for each ¢¥ >, p¥ gives the set
of matches that are contained in & (g, p¥). O

Eq. reflects a useful relationship between edge-induced and vertex-induced patterns.
In fact, although the theorem is stated in terms of converting from vertex-induced to edge-

induced, we can move in the other direction as well:

Corollary 6.2.1. Let p¥ be an edge-induced pattern with n vertices, and pV be its vertez-

induced variant. Then,

&g, p") = €9, 0"\ U &lg.4") 000", ¢")

qED'an

Proof. Let B denote the set

U &9,4") 0 o0, d").
q¥onp¥
From Eq. we have £X(g, p¥) = £ (g,p" ) U B. Notice that if £(g,p"") is disjoint from all
£:(g,q") 0 ¢(p¥, ¢¥) where ¢ D, p¥, then we could take the set difference on both sides
of the equation from Eq. with B to prove the corollary, simply because no element of
E¥(g,p") would be removed by the set difference operation.

It remains to prove that £/ (g, p") is disjoint from the various £/ (g, ¢")op(p”, ¢¥) where
q¥ o, p¥. We prove this by contradiction.

Let m be a match in & (g,p") N & (g,q") o ¢(p¥, ¢¥) for any p¥ and some ¢ where
¢¥ o, pf. First note that if p" is a clique, there is no ¢% D, p¥, and m cannot exist,
so we are done. Instead, suppose p¥ is not a clique, and thus has at least one anti-edge.
Since ¢ D, p¥, for each f € ¢(p¥,¢¥) there is an edge (f(u), f(v)) € E(¢¥) such that
(u,v) & E(p¥). This means (u,v) forms an anti-edge constraint in p¥', and (f(u), f(v))
forms an edge constraint in ¢¥. As m € £7(g,¢") o p(p¥, ¢¥), it can be written in the form
m = m' o f where m’ € £(g,q¢") and f € ¢(p¥,¢¥). But then ((m’ o f)(u), (m' o f)(v))
must be an edge in G, since (f(u), f(v)) € E(¢") and m’ is a match for ¢". This directly
contradicts the anti-edge constraint in p" that we established above.

Hence & (g,p") N EF(g,4") o o(p¥, ¢¥) = 0 for all ¢¥ D, p¥, as desired. O
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Aggregation Conversion. Let g € G be a graph and let p € G, be a pattern. Recall

Eq. [6:2}
a(€(g. ") =a(€g.p ) e (D D alEllg.a))o.f) (62

Proof. This equation follows immediately from Eq.
a(€5(9,0™))

=a(&@gr") U U &(g.4d")os0" ¢")

qBo,pF

= a(&(g.p )| P alEl(g.d")oo(p" ¢"))

qPonpP

a&(g.p ) e | D P aEr(g.4")) s f

aFonp? feo(p¥ qF)

6.3 Generating Alternative Pattern Sets

This section describes the pattern transformation step (see Figure to compute alterna-
tive patterns.

To fully exploit SUBGRAPH MORPHING, our goal is to generate alternative pattern sets
that would potentially compute the final results efficiently compared to the original query
patterns. This cannot be achieved statically because of two main reasons. First, the query
patterns in graph mining applications can change dynamically during runtime. For instance
in FSM, only those patterns that have enough matches in the data graph (i.e., cross a
support threshold) are extended to generate the new set of patterns to be explored in the
next step. And second, the input data graph itself impacts the performance of matching
(observation 3 in Section . Hence, we dynamically generate the alternative patterns for
the query patterns as they become available at runtime.

Since the possible alternative pattern sets grow recursively, the search space for identi-
fying efficient alternative pattern sets grows exponentially. For a single query pattern, the
choice may appear simple. However, when the input contains multiple query patterns, the
number of choices increases exponentially as the alternative sets for different patterns over-
lap, making it hard to estimate benefits. For instance, two patterns may have a lower cost
(i.e., faster to compute) compared to the cost of their individual alternative pattern sets;
however, the cost of the combined alternative pattern sets can be lower (due to overlapping

patterns) than that of the two patterns.
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Exhaustively searching all possible combinations of alternative pattern sets is impracti-
cal. Instead, we develop a greedy exploration strategy backed by a cost model that actively
prunes the search space. Our approach is to first generate a single alternative set, and then
use a cost-based selection strategy to iteratively improve the alternative set by substituting

better (low cost) alternatives.

6.3.1 Initial Alternative Patterns

Given a set of input patterns, we generate the initial alternative pattern set for each pattern
in the input set using Eq. [6.1] This primarily involves generating superpatterns of the input
pattern (second term in Eq. . While the final alternative pattern set contains a mix of
vertex-induced and edge-induced patterns, the choice of each individual pattern being either
vertex-induced or edge-induced is independent of the other patterns in the set. Hence, we
generate edge-induced superpatterns, and later optimize the choice for each pattern when
constructing the efficient alternative pattern set. By doing so, we maximize the overlap
between the alternative patterns generated across different patterns in the input set, which
is beneficial since the same superpattern (or its alternatives) covers multiple input patterns.

The superpatterns of the input pattern are generated by extending them recursively,
adding edges between disconnected vertices. Naively extending the input patterns can end
up generating duplicate patterns due to two reasons. First, adding edges between automor-
phic (or symmetric) sub-components of a given pattern can result in the same superpatterns;
for instance, adding an edge between any pair of disconnected vertices in a 4-cycle would
result in the same chordal 4-cycle pattern. Second, different patterns with the same num-
ber of vertices have a common subset of superpatterns; for instance, a 4-cycle and a tailed
triangle both have the 4-clique and chordal 4-cycle as their superpatterns.

We avoid generating redundant superpatterns by maintaining them in the S-DAG data

structure, as described next.

S-DAG for Superpattern Sets. As superpatterns get generated, we memoize them
and their superpattern-subpattern relationships in form of a directed acyclic graph, called
S-DAG. The S-DAG is queried each time before recursively extending any pattern and
adding new superpatterns in order to avoid redundant pattern alternatives.

Each vertex of the S-DAG represents a pattern (either one of the input patterns or one
of their superpatterns), and we draw directed edges from each pattern with k edges to its
superpatterns with k£ + 1 edges. Figure shows two S-DAG examples: one where patterns
are unlabeled, and other where patterns are labeled. Depending on the number of labels in
the pattern, the number of possible patterns increases compared to the number of unlabeled
patterns, and each labeled pattern can have many more superpatterns than an unlabeled
one.

For fast comparison and lookup operations on S-DAG, we represent the patterns using

64-bit pattern IDs which uniquely correspond to the pattern structures. Each pattern is first
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Figure 6.6: S-DAG for unlabeled patterns (on left), and for patterns with one yellow labeled
vertex (on right).

canonicalized (using Bliss library [I17]) so that its vertices have consistent vertex IDs. Then,
the edges of the canonicalized pattern are hashed consistently to compute its pattern ID
that uniquely identifies the pattern structure. While pattern IDs can be computed quickly

(in milliseconds) as patterns get generated, they can also be computed offline.

6.3.2 Selecting Efficient Alternative Patterns

Once the S-DAG is generated, the final alternative pattern set is constructed by carefully
selecting the set of patterns based on the potential performance benefits they can bring.
To avoid evaluating every possible alternative set in the exponential search space, we de-
velop a greedy algorithm that iteratively finds better alternatives using the S-DAG. Instead
of searching for the optimal alternative pattern set, our goal is to construct an efficient
alternative set that promises faster execution compared to the original query patterns.

Algorithm [I] shows the selection algorithm. Initially, each node in S-DAG is assigned
a cost that estimates the time taken to match that pattern. Since either variant of super-
patterns can be used in the alternative pattern set, the nodes are assigned the minimum
cost between the two variants of the patterns they represent. Then the algorithm proceeds
iteratively to replace patterns with lower cost alternatives.

For each pattern we check whether any subsets of the pattern’s children in the S-DAG
benefit from morphing. If the combined cost of the children is more than the cost of their
combined superpatterns, then the superpatterns are selected for the alternative pattern
sets. When the alternative patterns are selected, the S-DAG is re-weighted to reflect that
those patterns are free, i.e., their cost is set to 0, and then the patterns are traversed again.
The algorithm incrementally reduces the cost of the alternative pattern set until it can no
longer be improved. By considering only the subsets of each pattern’s children, we reduce

the exponential search space to the number of unique subpatterns for each pattern.
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Algorithm 1 Efficient Alternative Patterns

Input: Set of query patterns P and their S-DAGY
Output: Low-cost alternative pattern set S

1: INITIALIZEPATTERNCOSTS(S-DAGT)
2: procedure SELECTPATTERNS(P, S-DAGP)
3: S« P
4: while S not converged do
5: for each p € Uses PARENTS(S-DAG?, s5) do
6: for each C' € P(CHILDREN(S-DAG?, p)) where C C S do
7 costc <= ), INITIAL__COST(c)
8: SPC < Ucec SUPERPATTERNS(c)
9: costspc = ) cgpc COST(spe)
10: if costspc < costc then
11: S+ (S\C)uSspC
12: for each c € C U SPC do
13: sETCosT(S-DAGT, ¢, 0)
14: end for
15: end if
16: end for
17: end for

18: end while
19: return S
20: end procedure

Estimating Relative Pattern Costs. In order to identify cheaper pattern alternatives,
the selection algorithm requires pattern costs that represent the estimated relative times to
match different patterns. The cost of subgraph matching depends not only on the input pat-
terns and the data graph, but also on the system-specific properties such as the underlying
matching algorithm used by the system and on application-specific details like aggregation
functions.

Modern graph mining and subgraph matching systems like [146], [145], 192}, 95] often in-
corporate a cost model to compute efficient exploration plans for the given patterns. While
these models are useful, they do not account for any application-specific detail since it is
irrelevant to their matching plans. Since we are interested in costs that estimate the perfor-
mance of different patterns on a given application workload, for these systems we piggyback
on their existing cost model by enhancing them to include cost of result aggregation.

The data graph is modeled by an abstract probabilistic graph, where two vertices are
connected by an edge with a fixed probability. The subgraph matching process is modeled
as a series of V(P) nested loops over this abstract graph. After computing the expected
number of iterations in each loop, keeping in mind previous loops, the final cost is simply
the number of iterations in the innermost loop.

As aggregations are functions on individual matches, their costs are modeled as the num-
ber of estimated matches multiplied by the amount of work for the aggregation. The number
of estimated matches is already available from the cost model of the underlying system. The
amount of work for the aggregation can be estimated by profiling the application-specific

UDF to identify how aggregation time scales with the number of matches, or by analyzing
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the aggregation operations. For profiling, a set of n dummy matches can be generated by
randomly selecting |V (P)| vertices n times, and then the time required to apply the UDF
to these n matches gets measured. Repeating this for varying n and integrating the result-
ing curve yields an approximation of how the aggregation scales. Alternatively, the cost of
aggregation for simple or well-known operations can be directly provided as hints to the
system. For instance, the counting aggregation is performed using a constant operation per
match, and hence incurs no additional cost. On the other hand, FSM application incurs
O(|V(G)|) cost to approximate the overheads of merging MNI tables.

Finally, for systems like PEREGRINE and BiGJoin [I7] that do not use any cost model, we
compute pattern costs based on their pattern matching details using a similar approach as

AutoMine [146]. In addition, we improve the cost estimation using two novel enhancements.

o From profiling, we observed that highest degree data vertices (those in the 95th percentile)
contribute the majority (66-99%) of the matches and the majority of the execution time.
Hence, the graph model is restricted to the portion of the data graph comprising the

highest degree vertices.

o Since partial orders for symmetry breaking [93] impact the input size (e.g., adjacency
lists or indexed tuples) for the set operations or joins performed during matching, the
neighborhood size is estimated in terms of the expected number of smaller or higher

vertex id neighbors.

6.4 Transforming Results

The efficient alternative pattern set is given as input to the pattern matching engine. The
next step is to convert the matches generated for these alternative patterns into results
for the original query patterns (result transformation in Figure . As discussed in Sec-
tion we use permutation functions (i.e., ¢(p,q) in Eq. and Eq. that convert
the results based on isomorphic mappings from the query pattern to the alternative pat-
tern. For seamless conversion, our key insight is to permute the vertex ids in the pattern
instead of modifying the results so that the results get mapped for original patterns. We

will describe our result conversion strategies in Section and Section [6.4.2]

Output Modes. Graph mining systems often employ different output modes for returning
matches that are suitable for different applications. For example, applications like FSM and
MC return the final aggregation values (counts, support values) in the end after all required
matches are found. On the other hand, applications like SE return each individual match
to the user function for further processing (e.g., filtering) as the matches are explored. To
handle these output requirements, our permutation functions can be employed to convert

the results either on-the-fly or after matching finishes.
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Algorithm 2 Converting Aggregation Results
Input: Set of query patterns P, their alternative pattern set S,
and aggregation store A holding results of S
Output: Aggregation store R for P
1: procedure CONVERTRESULTS(P, S, A)
2 for each p € P do
3 for each ¢ € ALTERNATIVE(S, p) do
4: for each q_key € AGGRKEYMAP(q) do
5: for each f € ¢(p,q) do
6.
7
8

p__key < PERMUTE(q_ key, f)
R[p_key] + REDUCE(R[p_key|, Alq_key])

: end for
9: end for
10: end for

11: end for
12: return R
13: end procedure

6.4.1 Post-Matching Conversion

In this case, results get converted after matching for the alternative patterns completes.
Then the converted results are returned to output.

Since the final results are often computed by application-specific aggregation functions,
one way to convert the results would be by directly modifying the aggregation functions
(e.g., map-reduce UDF) to simply change the mapping between results and patterns. While
such a change is easy, it still requires capturing the relationship between the query patterns
and their alternative patterns into aggregation functions.

To make the conversion process seamless to the application, we instead modify the
vertex ids in the patterns, which does not require modifying application-specific logic. This
is achieved by applying the permutation function on vertex ids of the alternative patterns.
By doing so, we simply invoke the aggregation operation on the query pattern, but with
permuted ids, which ends up correctly routing the aggregation results from alternative
patterns to the query patterns.

Algorithm [2] shows the result conversion process. The results for alternative patterns are
maintained in the aggregation store A as key-value pairs, where keys are of different types
depending on the application (e.g., patterns for SC, pattern vertices for MNI). To convert
the results (lines 5-8), the aggregation keys for the alternative pattern are permuted based
on the permutation function to obtain the key for input pattern, and then the aggregation
values for those keys are combined using the application’s aggregation function (reduce on
line 7).

Ezxample. We illustrate how conversion happens for the MNI aggregation in FSM. To help
understand the context, the FSM application code is shown in Figure In the process
function, the individual vertices are mapped to the respective pattern vertices, and the

reduce operation merges the set of pattern vertices (7.e., MNI columns).
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void process(Pattern p, Match m) {
for (PatternVertex u : p.getVertices())
map (u, m(u));

MNIColumn reduce (MNIColumn accumulator,
MNIColumn new_value) {
return accumulator.merge (new_value);

Figure 6.7: FSM Application.
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Figure 6.8: Converting MNI aggregation for FSM.

Figure [6.8] shows an example of result conversion. The permutation function permutes
the vertex ids for pattern ¢ which results in a change in the mappings between keys (pattern
vertices) and values (MNI columns). Hence, for the results on top right, the column for vertex
0 gets remapped to the third column. Then, the aggregation function merges the columns

for p with the permuted aggregation.

6.4.2 On-the-Fly Conversion

Here, the results are converted as they get generated by the matching engine, and then the
converted results are sent down the application’s processing pipeline.

While we can employ the same strategy of converting patterns instead of converting the
results, it is possible to directly convert the match generated by the matching engine since
it is yet not been modified by the application-specific functions (i.e., converting the match
does not require application details). Algorithm [3| shows on-the-fly conversion of matches.
Instead of directly calling the application function with the alternative pattern ¢ and its
match m, the permutation function is applied on m which generates the match for the query

pattern p. These are then supplied to the application function (process on line 6).



Algorithm 3 Converting Matches On-the-Fly

: // Send alternative pattern g to matching engine
: // Matching engine starts finding matches
: // Matching engine generates match m for pattern ¢
for each f € ¢(p,q) do

m__permuted < PERMUTE(m, f)

PROCESS(p, m__permuted) /* Call UDF */
end for

NSa P

12 Pl

Figure 6.9: Vertex-induced patterns used in evaluation. The edge-induced variants do not
contain anti-edges.

6.5 Evaluation

Mining Systems and Implementation Details. We integrated SUBGRAPH MORPH-
ING in four state-of-the-art graph mining and subgraph matching systems: PEREGRINE,
AutoZero (an implementation of techniques in both AutoMine [146] and GraphZero [145]),
GraphPi [192], and BiGJoin [I7]. SUBGRAPH MORPHING is generally applicable to other
mining and subgraph matching systems like [95] [144] as well. Systems like Arabesque [205],
Fractal [77] and others [45], 219, 52] perform generic BFS or DFS explorations that do not
exploit the pattern structure in order to optimize exploration. Hence, they deliver similar
performance across different patterns of same size, providing little or no opportunity to
exploit performance difference across patterns.

We evaluate using the available mining capabilities of each of the four systems to cover all
cases. Hence, we use PEREGRINE and AutoZero for counting motifs and patterns, GraphPi
and BiGJoin when counting vertex-induced patterns with a UDF to filter, and PEREGRINE
for subgraph enumeration and FSM.

Subgraph Morphing was added in form of two modules external to the subgraph match-
ing engines in these systems (see Figure , i.e., the subgraph matching strategies and
optimizations in these systems were left untouched.

AutoMine [146] uses a compilation-based approach to generate matching schedules and
GraphZero [145] enhances the schedules using symmetry breaking (similar to [93]). Since
neither AutoMine nor GraphZero have source code available, we developed an in-house ver-
sion by faithfully implementing the symmetry breaking restrictions and performance model
for choosing individual pattern schedules from [145]. Unlike AutoMine however, GraphZero
does not merge the schedules of multiple input patterns. Hence we augmented our in-
house implementation with schedule-merging, so that overlapping loops in different pattern
schedules are merged together, and conflicting restrictions are applied separately to avoid

under-counting. We name this augmented implementation AutoZero. AutoZero directly gen-
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Num. Max. Avg.

G V(G E(G)] Labels Deg. Deg.
(MI) MiCo [82] 100K 1M 29 1359 22
(MG) MAG [110] 726K 5.4M 349 4779 14
(PR) Products [II0] 2.4M 61M 47 17481 52
(OK) Orkut [225] 3M 117M — 33133 76
(FR) Friendster [225] 65M 1.8B — 5214 55

Figure 6.10: Real-world graphs used in evaluation.
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Figure 6.11: Performance improvements from SUBGRAPH MORPHING in PEREGRINE & Au-
toZero for Motif Counting relative to baseline system without morphing; absolute times (in
seconds) for when SUBGRAPH MORPHING is enabled are shown on top of the bars. Red bars
indicate the cases where baseline did not finish within 24 hours (i.e., speedups for those
cases are underestimated).

erates C++ code for subgraph matching schedules, and invokes g++ version 10 to compile it.
Across all the experiments, we did not measure the C++ code generation and compilation
time for AutoZero.

Ezxperimental Setup. We investigate the impact of SUBGRAPH MORPHING on the per-
formance bottlenecks identified in Section [6.1] through experiments on a wide array of ap-
plications: Motif Counting (MC) of size 3 to 5 vertices, FSM with size-3 and -4, as well as
Subgraph Counting (SC) and Enumeration (SE) with patterns in Figure Most of these
patterns have been used in state-of-the-art evaluations [77, [192], and we have also included
some larger and denser patterns in order to stress the systems.

Figure lists the data graphs used in our evaluation. MiCo (MI) is a co-authorship
graph labeled with each author’s research field. MAG (MG) is an academic graph composed
of several vertex types. We use the portion representing citations between papers, where
papers are labeled by the venue they were published in. Products (PR) is a co-purchasing
network, where vertices represent products, labeled by their category, and edges indicate
two products are purchased together. Orkut (OK) and Friendster (FR) are unlabeled social
network graphs where edges represent friendships between users. MiCo, Orkut and Friend-
ster have been used to evaluate previous systems [205] [77) 146}, 95], while MAG and Products
are recent graph datasets designed to evaluate data mining tasks [110].
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Figure 6.12: Reductions in set operation times from SUBGRAPH MORPHING for Motif Count-
ing in PEREGRINE and AutoZero relative to baseline system without morphing. Bars are
marked with mean absolute times (in seconds) from executions where SUBGRAPH MORPH-
ING is enabled.
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Figure 6.13: Performance improvements from SUBGRAPH MORPHING in PEREGRINE for
Subgraph Counting.

All our experiments were run on a Google Cloud n2-highcpu-32 instance, equipped
with a 2.8GHz Intel Cascade Lake processor with 32 logical cores and 32GB of RAM.
Across all experiments, we measured the end-to-end execution time, which includes input
pattern transformation, mining computation, as well as result transformation. Since pattern
transformation is done on the input patterns, we observed this phase took little time—for
instance, transforming patterns of size 4 and 5 took at most 0.7 ms and 7.2 ms, respectively,

whereas finding matches for those patterns on large graphs often takes 10s-1000s of seconds.

6.5.1 Morphing for Reducing Set Operation Time

Since counting is heavily bottlenecked by set operations in both PEREGRINE and AutoZero,
we use Motif Counting (MC) as a representative benchmark. Figure summarizes
the results. Figure [6.12] shows that execution time for motif counting is dominated by set
operations.

Compared to the baseline systems, applying SUBGRAPH MORPHING reduced set oper-
ation time in AutoZero and PEREGRINE by 3 — 22x and 3.5 — 30X, respectively. This is

because morphing the vertex-induced patterns in Motif Counting results in alternative pat-
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G | With Morphing

3-FSM MI | 71.3-195.1s (1.29x)
MG | 89.225-2.64h (1.94x)
PR| 0.53-5.65h (2.26x)

(

4-FSM MI | 4.48-4.77h (3.61x)

Figure 6.14: Performance improvements from SUBGRAPH MORPHING in PEREGRINE for
Frequent Subgraph Mining. Minimum speedups are reported in brackets. Note that 4-
FSM on larger graphs did not finish in 24 hours since the complexity grows exponentially,
requiring more resources (more machines and time).

tern sets which contain fewer anti-edges. While anti-edges actively prune the search space
and reduce the number of matches generated, each anti-edge necessitates an additional set
operation (set difference) in the matching plan. Our selection algorithm identifies that the
additional time required for set operations is not justified by the reduction in the number
of matches since the counting aggregation is inexpensive.

The reduced set operation times translate to significant speedups in overall execution
times, as seen in Figure and Figure Subgraph Morphing yields a maximum
34x speedup in PEREGRINE for 4-MC on PR. The smallest speedup with PEREGRINE, 1.5x
for 5-MC on PR, is an underestimation since the baseline PEREGRINE (without SUBGRAPH
MORPHING) did not finish counting even half the patterns in 24 hours. In AutoZero, SUB-
GRAPH MORPHING yields 2 — 10x speedups for motif counting, including a conservative 5x
speedup in the OK 4-MC case, which the baseline system could not complete in 24 hours.

Subgraph Counting (SC). Motif Counting represents a best-case scenario for SUBGRAPH
MORPHING, since all superpatterns are already contained in the input pattern set. Here we
examine the converse situation in Figure (a—b), matching single patterns and pairs of
patterns from Figure such that few or no superpatterns are part of the input set. We use
PEREGRINE for these experiments, since it matches patterns one by one, further exacerbat-
ing the cost of extra superpatterns. Due to limited space, we skip AutoZero, which gives the
best case for SUBGRAPH MORPHING since merged matching plans significantly reduce the
cost of extra superpatterns. Even with higher costs for superpatterns, Figure shows
that SUBGRAPH MORPHING speeds up PEREGRINE executions by 1.2 — 24x. The greatest
speedup came from the large pg pattern, which PEREGRINE could not mine without mor-
phing. As expected, set operations are still the main bottleneck when matching individual
patterns, and SUBGRAPH MORPHING reduces the time spent on them by 1.3 — 10x (shown
in Figure , despite having to match extra patterns.

6.5.2 Morphing for Reducing UDF Overheads

We evaluate the effectiveness of SUBGRAPH MORPHING to address the key bottleneck in
Frequent Subgraph Mining (FSM) and filter-based mining.
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Figure 6.15: Performance improvements from SUBGRAPH MORPHING in GraphPi and
BiGJoin.
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Figure 6.16: Reduction in branches and branch misses in GraphPi and BiGJoin relative to
execution without SUBGRAPH MORPHING.

Reducing UDF overheads in FSM. Figure summarizes the performance results
when employing SUBGRAPH MORPHING in PEREGRINE for FSM. SUBGRAPH MORPHING
alleviates the UDF bottleneck in 4-FSM on MiCo by morphing the patterns predicted to
be most frequent into vertex-induced variants which will have fewer matches. For example,
the edge-induced 4-Star pattern with all of its vertices sharing the most frequent label in
the data graph is one of the most expensive patterns to mine in MiCo FSM due to the few
constraints in the pattern combined with the frequent labeling, leading to over 5.7B matches.
Morphing it generates 3 additional superpatterns (Tailed Triangle, Chordal 4-Cycle, and
4-Clique, all vertex-induced and with the same labeling), but results in 1.4B fewer matches,
and as many fewer UDF calls (a reduction of 24%).

Similarly for other expensive patterns, the morphed patterns saved over 13 hours of
time spent on UDFs while spending only 1 additional hour on set operations, yielding 3.6x
speedup. 3-FSM on MiCo shows the least improvement, as both the patterns and the data
graph are small, making the input patterns easy to match. Note that FSM operates on

labeled patterns, which generally require more superpatterns during morphing.
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Figure 6.17: Performance improvements from SUBGRAPH MORPHING in PEREGRINE for
Subgraph Enumeration with On-the-Fly conversion (absolute times in seconds).
Eliminating Filter UDFs. We apply SUBGRAPH MORPHING to vertex-induced subgraph
matching with GraphPi [192] and BiGJoin [I7]. These systems lack native support for
mining vertex-induced patterns; hence, extracting vertex-induced results requires matching
the edge-induced variants and using a Filter UDF to remove matches with extra edges.
With SUBGRAPH MORPHING, we compute vertex-induced results with edge-induced pat-
terns without invoking any UDFs.

As shown in Figure [6.15], SUBGRAPH MORPHING significantly speeds up GraphPi and
BiGJoin, by 1.4 — 18 and 6.3 — 13.3x respectively. This is because the native matching
capabilities in these systems outweigh the expensive edge lookups in Filter UDFs even when
multiple patterns must be matched.

We observed that 98% of execution time in the baseline system (without SUBGRAPH
MORPHING) was spent in UDF calls. Drilling deeper reveals that the poor performance is
primarily due to branches incurred on every match by the Filter UDF. Figure and
Figure show that eliminating the UDFs using SUBGRAPH MORPHING reduces the

number of branch misses by 30x on average (1.7 — 88x).

6.5.3 On-the-Fly Conversion

We evaluate the benefits of SUBGRAPH MORPHING for Subgraph Enumeration (SE)
where on-the-fly conversion is employed to handle a stream of matches. We used PEREGRINE
to enumerate matches comprised of vertices whose average weight is within a standard de-
viation of the distribution mean (vertex weights were assigned from a normal distribution).
All edge-induced 4-vertex patterns (4V¥) on MiCo and Products, as well as pf on MiCo
were used in this experiment. Neither p4E nor its alternative pattern sets could be matched
on Products within 24 hours.

Figure summarizes the results. Since the filter is only dependent on the matched
vertices, SUBGRAPH MORPHING trades the time spent filtering matches for additional set
operations by morphing into vertex-induced patterns which have fewer matches, and then
converting the matches that pass the filter on-the-fly. This reduces the time spent in UDFs
by 5 — 16x, and as a result, speeds up the execution by 2.6 — 4x.

88



71.16
378.68

%6 & %6 =
N —

94 54 : =

2.2 2.2 = B
2 0 2 0 .._
PR C‘)/K PR (‘)/K PR C‘)/K PR (‘)/K

Py P1o Py P1o

(a) PEREGRINE (b) GraphPi

Figure 6.18: Performance improvements from SUBGRAPH MORPHING for large patterns.
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Figure 6.19: The space of alternative pattern sets for 5-motifs and their performance (in
seconds) using PEREGRINE on MiCo graph. The input pattern set is marked by the cross
and the set selected by the cost model is marked by the triangle.

6.5.4 Scaling to Large Patterns

We use patterns pg and pjg that contain 7 vertices. Such large patterns are uncommon in
evaluations of graph mining systems. This is because graph mining workloads scale exponen-
tially with pattern size (theoretical bottleneck due to NP-complete nature), making large
patterns difficult to mine on single machine systems even for medium-sized data graphs.
Since our goal is to show the effectiveness of SUBGRAPH MORPHING on large pattern work-
loads, we control the data graph size to limit the workload size so that executions can finish
on a single machine in reasonable time. We do so by partitioning the Products and Orkut
graphs using METIS [121], and using PEREGRINE and GraphPi to mine pg and p% within
the partitions. This way, the edges between partitions are dropped out, which reduces the
workload size.

As shown in Figure [6.18a] and Figure [6.18D] morphing speeds up enumeration on PERE-
GRINE by 4 — 7x, while it also improves enumeration on GraphPi by 2 — 5x. We observed
that the analyses from Section [6.5.1] and Section [6.5.2 apply to large patterns as well. With
SUBGRAPH MORPHING incorporated, PEREGRINE spent 3 — 11X less time on set operations,
while GraphPi incurred 2.2 — 46x fewer branches.

6.5.5 Cost Model Effectiveness

A given input pattern can have exponentially many alternative sets, leading to potentially
large gaps in performance. We study the effectiveness of our cost model in identifying the
right alternative pattern set that delivers performance. Figure shows the performance

of 250 alternative pattern sets for 5-motif counting on MiCo, including the query pattern
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set and the set chosen by the cost model. The optimal set is over 3x faster than the slowest.
The cost model chose an alternative pattern set which performs within 10% of the optimal
one.

Several alternative sets perform worse than the query set; while this is visible in Fig-
ure [6.19] for 5-motif counting, it is especially clear in FSM which involves many patterns.
For 3-FSM on PR with support threshold 140K, blindly morphing all input patterns leads
to an execution time of over 22 hours, whereas the query pattern set takes 14 hours and

the cost model selects a set taking only 5.65 hours.

6.6 Conclusion

We presented SUBGRAPH MORPHING, a general technique to accelerate graph mining work-
loads across various graph mining systems. We exposed key factors that impact the per-
formance of graph mining workloads, and observed there is no singular bottleneck that is
common across the different workloads running on different graph mining systems. SUB-
GRAPH MORPHING exploits performance differences across pattern structures while also
incorporating key system-level and application-level characteristics to deliver high perfor-
mance. We formalized SUBGRAPH MORPHING and developed efficient strategies to enable

it in practice. Our extensive evaluation showed promising results.
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Chapter 7

OsirisBFT: Application Semantics
in Distributed Architecture

This chapter explores the potential of application semantics to address crucial and ubig-
uitous system design challenges beyond those covered by the static single-machine setting
used in PEREGRINE and the system-agnostic approach of SUBGRAPH MORPHING. Namely,
this chapter centres distributed graph mining on dynamically changing data in order to ex-
pose scalability and fault tolerance challenges intrinsic to developing available and reliable
high-performance analytics services.

Many graph mining use cases take place in an online setting, where application values
must be maintained as the underlying dataset changes. For instance, the graph anomaly de-
tection application seeks to identify anomalous structures in a rapidly changing graph [63].
Because individual changes (i.e., edge additions or deletions) only have local effects on sub-
graph structure, processing the whole graph in response to each modification is redundant.
Instead, incremental graph mining applications compute only the change in aggregation val-
ues by computing the difference that a graph modification causes in the application-defined
interesting subgraph set S [34], (17, [125] [120].

To magnify the scalability and fault tolerance challenges further, we target the Byzantine
failure model, where faulty machines can behave arbitrarily. Although incremental graph
mining applications are common in various settings, Byzantine failures are seldom consid-
ered despite occurring frequently in practice [I53] [163],[119]. For instance, applications in set-
tings like cybersecurity [I12], business intelligence [204], and fraud detection [207] are open
to threats where adversaries are incentivized to cause failures in order to gain access to user
data, create outages, or commit unchecked fraud. Similarly, accidental Byzantine failures
are also pernicious. Physical failures like memory corruption can create subtle flaws in the
output of a computation even despite the presence of Error-Correcting Codes [188, 153 [136],

with significant humanitarian [I55] and legal [57] consequences.

Use Case: Graph Anomaly Detection. This application maintains an up-to-date ver-

sion of the graph using a continuous stream of edge updates (insertion/deletion of edges),
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updateGraph(graph, edgeUpdates) {
for (u in edgeUpdates) Multiversioned

if (u.addition) graph.add(u.edge); Data Store
else network.delete(u.edge); \

3

detectAnomaly(graph, edgeUpdates) {
result = {}; p = anomalyPattern(); /
Computations | for (u in edgeUpdates)

N result += match(graph, u.edge, p); E)Output
return result; Records

Workers

}

Figure 7.1: Anomaly Detection. Update tasks modify the data store and computation
tasks perform pattern matching on the modified graph.

and performs pattern matching on the updated portion of the graph to identify matches
of anomalous patterns [63]. As shown in Figure the updates are applied to a mul-
tiversioned data store and multiple tasks perform pattern matching in parallel using the
appropriate versions of the network. The pattern matching computation (detectAnomaly ()
in Figure is orders of magnitude more expensive than performing edge updates in the
data store (updateNetwork() in Figure . Graph anomaly detection is a strong repre-
sentative for incremental graph mining applications since it captures the core computation
(i.e., computing matches) and generates large output (i.e., all matches of an anomalous
pattern) to quickly expose system scalability bottlenecks and will be used as the primary
example throughout this chapter.

Here, Byzantine failures can affect the graph in the data store as well as the pattern
matching computation. In the first situation, faulty workers can apply incorrect/malicious
edge updates resulting in inconsistent views of the graph, hence generating unreliable results
computed from inconsistent data. To safeguard against such failures, various Byzantine
fault tolerant protocols for managing state have been developed, for example Kauri [160],
Basil [200] and others [41} 11, (66, 129], 106}, 229, [19, 126, 8]. These protocols target applications
composed of read /write transactions where ordering requests via BF'T consensus is the major
bottleneck.

In the second situation, even if the data store is maintained correctly, faulty workers
performing pattern matching on correct data can result in incorrect output. For this, solu-
tions like Medusa [65] and others [198, 64, 169, [157] enable BFT for applications dominated
by computation instead of consensus. Like these works, this chapter targets scalable com-
putation and high output record throughput.

Unlike traditional crash failures, Byzantine failures cannot be overcome with straight-
forward crash recovery mechanisms like checkpointing, because faulty processes can silently
corrupt intermediate results. As a result, at the heart of these BFT solutions are repli-
cated state machine protocols (RSM) that replicate both application state and task exe-

cution [I86]. Specifically, workers are divided into independent subsets of replicas that all
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maintain the same application state and execute the same tasks, such that different subsets
maintain distinct partitions of application state and execute different tasks in parallel. In
such an approach, safety (i.e., results should be correct) and liveness (.e., downstream pro-
cesses should receive results) are guaranteed if all subsets contain O(f) workers and at most
f workers in each subset are faulty, as a majority of replicas will compute the correct re-
sult. However, replicating application tasks in such RSM-based systems imposes significant

theoretical and practical limits on scalability and processing throughput.

Limited Task Capacity. Replication theoretically limits the number of tasks that can
be executed in parallel to a fraction of the cluster’s actual hardware capacity. A cluster of
n workers can execute at most [n/(2f + 1)J|ﬂ replicated tasks in parallel. This means even
with minimum fault tolerance f = 1, processing with RSM requires 3x the computation
resources as a regular execution. Figure shows the number of tasks that can be executed
in parallel with RSM as a function of cluster size, and we corroborate this analysis by
measuring the processing throughput in terms of number of result records generated per
second for Anomaly Detection in Figure [7:2b] As seen, RSM-based processing on 32 nodes

with f = 1 achieves similar throughput to only 8 nodes without fault tolerance.

Local Failure Bounds. Scaling an RSM-based system in practice requires that the fail-
ure bounds of each replica group can be realistically achieved. In traditional Byzantine
fault tolerant applications like data stores which run on small clusters, techniques like n-
version programming and geo-distribution can be used to prevent correlated failures from
quickly overwhelming cluster redundancy and compromising safety or liveness. However,

such solutions quickly become cost-prohibitive for large analytics clusters.

Key Insight. The computation in incremental graph mining applications involves multi-
ple steps that are performed iteratively (i.e., matching the pattern step-by-step). Hence,
computation tasks are often orders of magnitude more expensive than state updates since
the latter only involve agreement on the ordering of updates and modifying the underlying
graph. Although incremental graph mining tasks are time-consuming to execute, their re-
sults can be verified much more quickly. This is because verification simply involves checking
whether the results satisfy application semantics (e.g., whether the reported anomalous sub-
graphs indeed match the pattern) which is much simpler than computing the solution itself.
Hence, with verification being much faster than the original computation, BFT executions
can be guaranteed without replicating the computation by judiciously verifying results.

Our Approach. OSIRISBFT separates state management from computation task execution
and explores the possibility of BFT without replicating expensive graph mining tasks. The
result is a distributed BFT architecture for incremental graph mining applications backed

by two components: a BFT data store for managing global state, and verification-based

fn/(2f +1)] tasks using non-equivocation from modern RDMA networks [6] or trusted hardware [I35];
otherwise the bound degrades to |n/(3f +1)].
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Figure 7.2: Scaling of RSM-based processing for Anomaly Detection (i.e., with
detectAnomaly() replicated) assuming at most f failures per replica group.

processing for application computation. Prior solutions [0, 126l 28, 229] already provide
efficient BFT state management as discussed above. We incorporate an existing RSM-
based BFT design [6] for our data store, and primarily focus on developing an efficient

verification-based processing architecture.

OsirisBFT. OSIRISBFT decouples task computation from fault tolerance by offloading
the responsibility of detecting faults to a special subset of workers called verifiers. Regular
workers execute computation tasks, and their results are analyzed by verifiers to protect
against failures. Hence, workers executing computation tasks need not be replicated to
ensure safety, enabling scalable execution. Furthermore, verifiers check the generated results
independently, and only perform consensus to linearize input tasks. Hence, OSIRISBFT can
execute n — O(f) parallel tasks in a cluster with n workers, as opposed to n/O(f) in RSM.

A verification-based BFT processing architecture seems promising, as reducing replica-
tion addresses both the task capacity and failure bound assumptions that hinder scalability.
However, realizing OSIRISBFT in practice poses several challenges.

The first challenge is how to distinguish Byzantine executions from graceful executions
that are not impacted by Byzantine failures? Byzantine failures can impact the execution and
violate the application semantics in various ways (e.g., partially executing tasks, repeatedly
executing the same task, simply outputting results that appear valid but do not satisfy
the task requirements, w.r.t.). Developing custom verification protocols to identify these
different behaviors can easily become intractable, especially since several of these issues
require understanding the application semantics to distinguish a Byzantine behavior from
a correct one.

To address this, we develop an output failure model that captures how Byzantine fail-
ures impact the application results. Our model groups all possible application failures into
three classes of output failures. We then formalize verifiability properties required to detect
each class of output failures, and develop werification operators that allow our processing
architecture to capture the required incremental graph mining application semantics so
that verifiers can safeguard against all classes of output failures. As further evidence for the

power of application-awareness, we show that output failures, verifiability properties, and
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verification operators all apply not only to incremental graph mining applications, but to a
broader class of task-parallel applications.

The second challenge is how to perform verification robustly and efficiently? While verifi-
cation operators capture faults that are observable from application results, verifiers them-
selves can be faulty, which can in turn cause complex failures even if workers correctly
execute their tasks.

For verification that is both efficient and resilient, we develop robust and lightweight
protocols. Verifiers certify the application results using the verification operators, with zero
coordination among the verifiers during graceful executions. To achieve robustness in our
verification pipeline, we rely on redundancy in communication between verifiers and other
actors in OSIRISBFT. Our careful use of cryptography, timeouts, and limited use of heavy
communication primitives like non-equivocating multicast capture complex failure cases
while retaining efficiency when processes are well-behaved.

The final challenge is how to maintain resource utilization and processing throughput
as processing workload varies over time? As processing workload changes over time, tasks
demanding high computation can keep workers busy even though the verification workload
remains low. On the other hand, failed workers leaving the system can result in throughput
drops that can persist in the remaining execution. We design a dynamic role-switching strat-
egy to improve resource utilization and processing throughput across different processing

conditions.

Results. To the best of our knowledge, this thesis provides the first treatment of en-
abling Byzantine fault tolerance for incremental graph mining applications (as well as task-
parallel applications more broadly) without replicating application computation. OSIRIS-
BFT is backed by safety and liveness proofs to ensure correctness under all circumstances
and progress even in presence of Byzantine failures. We evaluated OSIRISBFT with graph
anomaly detection and two other distributed task-parallel applications, as well as across
different processing workloads. Our results show that OSIRISBFT delivers high processing
throughput and better scalability compared to replicated processing, and it scales compa-
rably to a baseline without any fault tolerance. Importantly, OSIRISBFT overcomes the

performance overheads from ensuring fault tolerance by simply scaling out.

7.1 Overview of OsirisBFT

The system is modeled as a pipeline with three steps: (i) input processes I P generate or in-
gest tasks and distribute them downstream; (ii) worker processes W P execute the tasks and
output a sequence of records; and, (iii) output processes OP receive the results. I P and OP
can overlap. Tasks can involve state updates (e.g., updateNetwork () in Figure , compu-
tation (e.g., detectAnomaly () in Figure , or both. This pipeline follows the general ar-

95



® b2f+1 — op
00 & & el 00
Tasksi \/ VPj I i Verified
Linearized ;' -d b g ‘G_ <E\Rt?;ordsd
Tasks EDDDDDDE ecords

Figure 7.3: Verification-based processing architecture.

chitecture of existing distributed incremental graph mining systems like Delta-BiGJoin [17]
and Tesseract [34].

Figure shows the verifiable processing architecture. WP is divided into two sub-
clusters: the execution cluster EP and the verifier clusters V P. The execution pro-
cesses (or simply, executors) execute computation tasks and output records, whereas the
verifier processes (or simply, verifiers) deal with verification of the generated records. A
computation task is executed on each input exactly once by an executor in EP (i.e., no
task replication). V P is partitioned further into k independent Byzantine fault tolerant
sub-clusters V Py...V P;_1 with each |[VFP;)| > 2f +1 (0 < i < k). One of the verifier sub-
clusters is arbitrarily chosen to be responsible for performing consensus to linearize tasks
and coordinating the remaining processes throughout the entire execution; we refer to this

sub-cluster as the coordinator V Ppo.

State Management. The state management layer resembles the learner architecture [105].
For simplicity and maximal use of hardware resources, the application state is colocated with
W P. As we discuss later, we make no assumptions about failures in £ P. To safely perform
concurrent state updates, the coordinator sub-cluster V Poo linearizes tasks to enforce a
global order on state updates, and keeps the rest of W P appraised so correct processes can
maintain fresh, globally consistent copies of their state. This design avoids inflating the cost
of queries with read requests to a disaggregated storage system or cross-shard transactions
in a sharded solution by ensuring all processes maintain a local copy of the state, since

analytics queries frequently perform reads.

Verifiable Processing. OsSIRISBF'T enables scalability by placing all responsibility for
Byzantine fault tolerance on V P, freeing EP to execute tasks without overheads. Tasks
flow from IP to the coordinator V Poo. V Poo linearizes the tasks and broadcasts state
updates to WP while distributing computation tasks among EP. State updates mutate
local application state, and computation tasks operate on the local state to produce output
records. While every state update is sent to all of W P, each computation task is assigned to
a single executor at a time and reassigned only if a failure is suspected. Then, the results of
computation tasks flow from EP to VP to OP. Each output record is sent to 2 f+ 1 verifiers
in a Byzantine fault tolerant sub-cluster V P; for verification to ensure output processes only

observe correct records.
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Computation | Computation | Communication Faults

Replication | Scalability Replication Tolerated
ZFT 1 |WP| 1 0
RCP 2f 41 WP|/O(f) 1 Swe, f
OsirisBFT 1 |WP| — O(f) 2f+1 |EP| +vaif

Table 7.1: Performance and fault tolerance of OSIRISBFT compared to replicated
computation strategy (RCP) and a baseline with no fault tolerance (ZFT).

Since only verifiers interact with the downstream and upstream processes, correct pro-
cesses in I P and OP never observe failures in £ P, even though computation tasks are never

replicated.

Computation- Communication Tradeoff. Table[7.I]shows the computation redundancy,
the communication redundancy, the fault tolerance, and the computation scalability pro-
vided by OSIRISBFT, compared with the RSM-based replicated computation strategy
(RCP) where WP is divided into sub-clusters WP; of 2f 4+ 1 processes each, and com-
putation is replicated in all processes in a sub-cluster.

OsIrISBFT optimizes for application computations. It favors replicating communication
rather than computation when possible, leveraging ample bandwidth in high performance
networks to maximize utilization of cluster resources. Each output record is replicated over
the network to 2 f 41 verifiers in V P;, and in exchange, computation tasks are not replicated
in graceful executions.

Hence, O(f) processes verify records while |WP| — O(f) processes execute tasks. The
number of verifier sub-clusters can be kept small relative to |W P|, hence achieving higher
performance than RCP by not replicating the expensive application computation, and only
replicating the lightweight verification. Moreover, OSIRISBFT tolerates faults more freely,
since no executor is assumed correct. Each V P; tolerates f failures (similar to WF; in
RCP); in addition, OSIRISBF'T tolerates complete failure of EP. Hence executors, and the

application, can scale independently of f.

Throughput-Latency Tradeoff. OSIRISBFT adopts a throughput-focused architecture
oriented toward use cases where input tasks or output records pass through the system
at high volumes. When there are fewer active computation tasks than there are available
workers and the application produces little output, verifying results introduces additional
latency with no benefit to throughput while a replicated architecture could communicate
results directly to downstream processes. By concentrating on throughput, OsirRISBFT
scales far better than replicated-compute processing when executing incremental graph
mining and other large-scale task-parallel applications, where the arrival rate of input tasks

and the output rate of records can quickly saturate system resources.
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7.2 System Model

Service Guarantees. OSIRISBFT adopts the Byzantine failure model, where processes
can behave arbitrarily, including crashes, adversarial failures, and coordination between
malicious processes. We define safety and liveness to limit the impact of Byzantine faults
in WP. For all i, if at most f processes in V P; fail, and V P; contains 2f 4 1 processes
that can verify output records from other workers, OSIRISBFT is linearizable (safety): all
correct OP observe records corresponding to a legal sequential execution of correct tasks
submitted by IP. Furthermore, all correct OP eventually observe results for every task
submitted by I P (liveness). Note that safety is not compromised even if all processes in P
are faulty. However, the system is also bound by assumptions made by its state management
layer. As mentioned above, we assume the state is managed by the Byzantine fault tolerant
V P processes, and EP learn of state updates from V P. If state must be safely stored on
EP using a different approach then additional assumptions about failures in FP may be
necessary. We make no assumptions about the number of failures in IP or OP.

We assume that adversaries have finite resources proportionate to correct processes, and
cannot overwhelm correct processes with network traffic or break cryptographic primitives
like digital signatures. Hence by authenticating all communication, correct processes cannot
be impersonated.

Safety can be guaranteed if the system is asynchronous, and we make the standard
assumptions from previous work [41], 229] 200}, [160] regarding partial synchrony for liveness:
there is some known A and unknown global synchronization time (GST) such that after

GST, all messages between correct processes arrive with maximum latency A [78].

Communication Primitives. To achieve fault tolerance with 2f + 1 processes in a sub-
cluster instead of the well-known lower bound of 3 f+1 processes [36], our techniques rely on
a multicast primitive that guarantees non-equivocation of certain messages (e.g., Reliable
Broadcast using RDMA [6] or trusted hardware [I35]). In conjunction with digital signa-
tures, non-equivocating multicast enables atomic delivery of a message to 2f 4+ 1 processes
where f are faulty [59]. Such primitives are relatively heavyweight, and hence they are used
sparingly. For situations where non-equivocating multicast is not available, OSIRISBFT can
operate with 3f 4+ 1 processes in each sub-cluster. All other messages use reliable links that

guarantee messages are not dropped or reordered (e.g., using RDMA RC protocol [I1§]).

7.3 Identifying Application Faults

OsIRISBFT detects violations due to Byzantine failures by verifying the output records
produced by executors. In this section, we model the impact of Byzantine failures on appli-
cation results and develop verification operators to efficiently validate the records returned

by executors.
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7.3.1 Incremental Graph Mining

Incremental Application Semantics. A graph mining application App is incremental
if it is possible to compute the change in value of App(g) in response to a change in g.
This chapter centres incremental graph mining applications as its primary focus, but the
techniques developed here apply equally to the broader class of task-parallel applications
described in Section

Consider a graph mining application App as defined by Eq. Let gg be an initial data
graph, let g1, g2,... be a series of distinct graphs, and let S; C Sy, be the subgraph set
processed by App(g;). Since g; and g;—1 are distinct, there is a non-empty set containing
the edges present in g; but not ¢g;—1 and the edges present in g;—; but not g;, denoted by
9iAgi—1 (following the notation for symmetric difference of sets). For an aggregation (R, @)

forming an abelian grougﬂ we define

App(gingi1) = @ vis) & @ —v(s)

SGSi\Sifl SESifl\Si

where —v(s) is the inverse of v(s) in R. Then for ¢ > 0, an incremental graph mining

application can be written

App(g:i) = App(gi—1) ® App(giDgi—1).

Example 7.3.1 (Anomaly Detection). Anomaly detection is a form of pure subgraph
matching, with R = P(Sy,), and v(s) = s. To ensure that App(g;Agi—1) is well-defined,
the aggregation must form an abelian group. Therefore, we define & as symmetric differ-
ence (i.e., A) instead of set union, since any powerset is an abelian group under symmetric
difference [91] with each element acting as its own inverse. This choice of aggregation main-
tains identical semantics as the Subgraph Matching application presented in Section [2.2.1
since any two subgraph sets generated by a matching algorithm and subsequently aggre-
gated are disjoint, while symmetric difference and set union are equivalent when applied to
disjoint sets. The set of anomalous subgraphs computed in App(g;—1) is simply S;_1, and
App(giAgi—1) computes the union of S;_1 \ S; and S; \ S;_1 since the two sets are disjoint

by definition, which is conveniently the symmetric difference of S; and S;_1. Therefore the

fAn abelian group is a commutative monoid where every element has an inverse. If the subgraph set S;
has fewer subgraphs than S;_1, then the change in aggregation value can only be computed by removing the
contribution of some subgraphs, necessitating inverses.
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symmetric difference of App(g;—1) and App(g:iAgi—1) is

App(gi-1) @ App(giDgi—1) = Si—1(Si—1AS;)
(Sic1ASi—1)AS;
AS;

= S; = App(gi).

Hence, anomaly detection has incremental application semantics.

Modeling System FExecution. The system consumes a stream of tasks as input and
produces a stream of records as output. Formally, applications operate on global states
S =1{90,91,- -}, possible output records drawn from the aggregation value set R (e.g., all
possible sets of subgraphs in anomaly detection) and tasks drawn from a set 7 = N x N
representing potential edges (referred to by pairs of integer vertex ids) to be modified.

Tasks are processed using a pair of functions & and A, assuming a base state gg. For a
graph g; € S and e € T, U(gi, e) returns a new global state g; € S obtained by adding edge
e to g; if it did not already exist, or removing e from g; if it already existed. On the other
hand, A(g;, e) executes App(g;Agi—1) and returns a sequence of records R = [rg, 71, ...| such
that V,,cr 7 € R.

By appending an opcode to each task describing whether to execute U, A, or both, this
model captures common use cases such as: (i) event-driven analytics where computation
occurs in response to an update (i.e., tasks call for both a state update U and a computation
A); (ii) time-based analytics where computation and updates are decoupled (i.e., some tasks
call only U and appear whenever updates arrive, others call only A and appear periodically
to compute analytics logic); (iii) batch processing where the state is static (i.e., tasks never

call U); as well as (iv) classic state management applications (i.e., tasks never call A).

7.3.2 Output Failure Model

A faulty worker can impact the output generated by graph mining applications in various

ways. We categorize the impact of arbitrary faults as three types of output failures.

[Mismatch] An output record r corresponding to task ¢ is a mismatch if it does not satisfy
the problem statement of ¢ (i.e., 7 ¢ R or r & A(s,t)). A faulty process in WP can
invalidate downstream computations by generating correct records for the wrong task, or

simply random records.

[Duplication] A faulty process in W P can perform a replay attack by outputting a record
r multiple times. An output record r corresponding to task t is a duplication if it has been
output previously in the result stream for ¢. Duplication can skew the output distribution

and hence break applications.

100



[Omission] A faulty process in WP can omit portions of the output (i.e., produce a
strict subset of A(s,t)). For example, a malicious process can hide suspicious records from

downstream analysis in a cybersecurity application.

The output failure model is complete with respect to Byzantine failures from the per-
spective of application output: if a certain sequence of records is expected, incorrect results
can only arise due to MISMATCH, DUPLICATION, or OMISSION.

Lemma 7.3.1. All invalid records produced by an executor correspond to an output failure.

Proof. We proceed by contradiction. If an executor neglects to produce any records, it will
be classified as OMISSION. So suppose that an executor produces an invalid record r which
does not qualify as an output failure. To avoid MISMATCH, » € R and r € A(sy,t), for
some valid task ¢ € T and corresponding state s; € S. But then either r repeats in A(sy, )

(classified as DUPLICATION), or r is valid since it follows all application semantics. O

Lemma 7.3.2. Correct processes executing A do not generate output failures. Faithfully

executing A with correct tasks does not generate output failures.

Proof. Given a valid task t € T and corresponding state s; € S, A(s¢,t) does not result in
an output failure by definition. Therefore the only way for a correct process to produce an
output failure is if A is executed with an invalid task ¢ ¢ T or a state s such that s ¢ S
or s does not correspond to t. But this is impossible by Lemma which proves that
correct processes share the same view of the global application state, corresponding to a
consistently ordered sequence of valid tasks. Therefore, no correct process will observe an

incorrect state or invalid task while executing A. O

7.3.3 Properties for Verification

An incremental graph mining application is verifiable if it satisfies the following four prop-

erties:

[Task-Validity] For an arbitrary object t, it is possible to determine whether ¢ € T (i.e.,
whether A(s,t) is defined for arbitrary s € S).

[Task-Scope] For an arbitrary record r, it is possible to determine whether » € R (i.e.,

whether A can produce r).
[Task-Ordered] For every t € T and g € S, A(g,t) is totally ordered.
[Task-Bounded] For every task t € T and g € S, A(g, t) is finite.

The TASK-VALIDITY property prevents MISMATCH failures where Byzantine input pro-
cesses submit invalid tasks to be executed. A worker executing a task it was not assigned

implies either MISMATCH (i.e., no input process generated the task) or DUPLICATION (i.e.,
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a different worker was assigned the task). The TASK-SCOPE property distinguishes valid
and invalid records, so that MISMATCH failures involving incorrect or nonsensical records
can be identified. The TASK-ORDERED property represents the process-local program order
of the executing worker. A worker executing a task in a TASK-ORDERED application pro-
duces records in a specific order, and hence out-of-order output would imply DUPLICATION
or MISMATCH. Finally, the TASK-BOUNDED property requires that applications guarantee
termination. Without this property, it is impossible to detect OMISSION because observed
output from a worker process cannot necessarily be compared with the expected output of
A (i.e., they can both be infinite), which makes it impossible to identify whether a record

is missing.

Example 7.3.2 (Anomaly Detection). The anomaly detection application satisfies all of

the properties above.

[Task-Scope] It is possible to determine whether a record r is truly an anomalous subgraph
by ensuring all the edges in r exist in the graph and there exists a graph isomorphism

between r and the anomaly pattern.

[Task-Ordered] Any deterministic subgraph matching algorithm implicitly defines an or-
dering on its output based on program order (e.g., since the algorithm can be viewed as
a series of nested loops) and the layout of data graph edges in memory. Hence, there is a

total ordering on the set of subgraphs produced by A(g,t).

[Task-Bounded] A finite graph has a finite subgraph set, so A(g,t) can only produce

finitely many anomalous subgraphs.

While many incremental graph mining applications satisfy these properties, even those
that do not can be executed in OSIRISBFT by decomposing the application into separate
subgraph generation and aggregation steps. As Example [7.3.2] shows, incrementally listing
subgraphs is verifiable. Therefore, the results of non-verifiable incremental graph mining
applications can be checked by verifying the subgraphs provided as input to the aggrega-
tion operator, and then offloading aggregation to the replicated verifiers or to downstream
processes (as in Tesseract [34]). In this fashion, aggregation computations are performed by

trusted or fault tolerant processes, while subgraph generation is verified.

7.3.4 Output Verification Model

Depending on the nature of the failures, they can be detected by: (a) employing generic
protocols in the underlying system; or, (b) verifying output records against application
semantics. Generic verification will be discussed in Section[7.4.2] Here we enable application-

specific verification.
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Algorithm 4 API for verification operators.

bool isValid(Record r, Task t);
bool happensBefore(Record a, Record b);
int outputSize(Task t);

Verification Operators. We model application-specific verification operators that analyze
output records. Verifiable applications implement these operators, which are invoked by
verifiers (explained later in Section [7.4.2).

Algorithm [4 shows the three verification operators. isValid() checks whether a record
r is valid (i.e., 7 € R) and is generated by the given task t. happensBefore() captures
the process-local program order of the executing worker by checking whether a record a
is ordered before record b. Finally, outputSize() returns the number of output records
for a task ¢. The verification operators are also complete, i.e., they combine to detect all
types of output failures (see proof in Section . MISMATCH is detected by isValid ()
and outputSize () that together ensure the output records are the ones expected from the
tasks. DUPLICATION is detected using happensBefore() and outputSize() that identify

repeated records arriving from the correct task. OMISSION is detected using outputSize ().

Example 7.3.3 (Anomaly Detection). Algorithm [5|illustrates the verification operators for
anomaly detection, where the computation primarily involves pattern matching. isValid ()
ensures that each subgraph record is indeed a subgraph of the network graph, matches the
pattern, and contains the updated link that resulted in the task to compute that record.
happensBefore () determines the order between two subgraph records based on their prefix-
ordering (prefix-ordering is guaranteed by most pattern matching systems like PEREGRINE
or GraphPi [192]). Finally, outputSize() simply returns the true number of subgraphs
using efficient and exact counting optimizations (e.g., inclusion-exclusion [192] or SUBGRAPH

MORPHING) which are orders of magnitude faster than matching each individual subgraph.

Algorithm 5 Verification operators for Anomaly Detection.

// Network is network graph. Pattern %s pattern to match.
// PatternMatcher contains the matching logic.
bool isValid(Record r, Task t) {
return isSubgraph(Network, r) && isMatch(Pattern, r)
&& r.links () .contains(link(t));
}
bool happensBefore(Record a, Record b) {
for(int i=0; i<a.length(); ++i) {
if(ali]l < b[i]) return true;
if (ali]l > b[il) return false;
// dif(ali] == b[i]) continue;

return false;
}
int outputSize(Task t) {
PatternMatcher.count (Network, Pattern, t);
}

103



7.3.5 Verifiability Beyond Graph Mining

The output failure model, verifiability properties, and verification operators can be ap-
plied to the broader class of task-parallel applications that encompasses incremental graph
mining.

Task-Parallel Applications. Task-parallel applications also consume a stream of tasks
as input and produce a stream of records as output. Instead of graphs, the set S contains
arbitrary application-specific global states, and a task ¢ € T consists of application-defined
data that will be passed as input to U /.A. Task-parallel applications generate records drawn
from a set R without any particular algebraic structure. Similar to the incremental graph
mining case, U(s,t) updates a global state s € S based on task t € T and returns a new
state; and A(s,t) executes an application-specific computation on a global state s € S and

task ¢t € 7 and returns a sequence of records R = [rg, r1,...] such that V,.cr r; € R.
Generalizing Verifiability. Lemma and Lemma apply naturally to task-

parallel applications, therefore the output failure model remains complete with respect to
task-parallel applications, and any task-parallel application that implements the verification
operators can be executed safely and maintained live by OSIRISBFT.

Task-parallel applications include incremental graph mining applications like anomaly
detection, but can also model a variety of other use cases like optimization (e.g., motion

planning) or cluster analysis (e.g., video analysis).

Example 7.3.4 (Motion Planning). The motion planning application solves NP-complete
Mixed Integer Programs (MIP) to determine routes for e.g., airplanes [166] and robots [187],
where output failures can lead to human harm. This is a batch-processing workload with no
underlying state (i.e., U is never called); tasks are MIP instances and A invokes a solver,
returning a single record containing a solution with a proof of optimality, or a proof showing
the MIP instance is infeasible (i.e., impossible to optimize). Then the verification operators
are straightforward: isValid() invokes the solver to verify whichever proof is present in
the record, while happensBefore and outputSize are trivial since each task generates a

single record.

Example 7.3.5 (Video Analysis). Here, S consists of frames in a video feed, and tasks are
occasionally submitted to the system to compute pixel clusters useful for image segmenta-
tion and motion detection [22] 227, 38]. When applied to e.g., security cameras, Byzantine
fault tolerance is desirable. A computes a k-centroids clustering [I13] in response to occa-
sional tasks consisting of an integer k, returning locally-optimal centroids in the given video
frame. The clustering is valid if running an additional iteration of the k-centroids algorithm
shows negligible change in the centroids (i.e., the original execution had converged to an
optimum). The happensBefore and outputSize verification operators are trivial since each

task generates k distinct numerical records.
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The discussion in the rest of this chapter applies to any verifiable task-parallel appli-
cation. This generalization demonstrates the power of application-awareness beyond graph
mining, as the insights from incremental graph mining semantics enable verification for a

wide array of applications.
7.4 Verifiable Processing with OsirisBFT

We present the verifiable processing architecture. We first summarize how tasks, records
and state are managed, and then describe the normal execution followed by verification
protocols and strategies for workload management.

State Management. Guaranteeing linearizability of computations on concurrently updat-
ing state requires efficient mechanisms for isolating state snapshots. Modern data analytics
systems [231], [40], 150] employ multiversioning in their data stores to enable concurrent com-
putations over well-defined deterministic snapshots. Specifically, both the state and updates
to the state are associated with a logical timestamp, and computations are restricted to spe-
cific states based on time intervals or windows. We replicate the timestamped state across
all W P to ensure consistency despite failures. Processes which incorrectly update state are
caught because they output incorrect results (executor), or ignored as most processes in

each sub-cluster operate correctly (verifier).

Replication €& Communication. To retain efficiency during normal execution, we de-
velop optimistic protocols that optimize for low replication and fast communication. These
decisions lead to graceful executions similar to a system without fault tolerance, but create

a larger threat surface.

Task Batches € Record Chunks. To reduce communication overheads, tasks are streamed
in batches. Likewise, the sequence of records generated by a single computation task is split
into disjoint subsequences called chunks. Executors output a stream of chunks, allowing

verifiers to proceed in parallel instead of waiting for the entire sequence of records.

7.4.1 Normal Execution

Figure [7.4] shows the behavior of the system during graceful executions, divided across four
phases (marked [P1]-[P4]).

Task Flow: IP +— V Pco — {V P, EP}

Algorithm [6] shows the protocols for this flow. The input processes send task batches to
V Poo [P1]. VPoo performs consensus to linearize the tasks, assigning monotonically in-
creasing ids to state updates, which serve as logical timestamps (line 4| in Algorithm @
Tasks with only computations are given the timestamp of the most recent state update.
Since ids are unique throughout the execution, faulty executors computing incorrect tasks

can be identified. In the same consensus, V Poo assigns computations to executors. The
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[P1] [P2] [P3] [P4]
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OP | Tasks Record Copies
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co Tasks Assignments
Updates
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Execute Multicast
EP Computation {EHIEE
to VP,

Figure 7.4: Overview of verification-based processing.

tasks are then distributed among the cluster [P2]: computations are sent to assigned ex-

ecutors and state updates are broadcast to W P.

Coordination-Free Task Assignment. Each task has: (a) an assigned executor which
computes the task and generates records; and, (b) an assigned verifier sub-cluster to verify
those records. While task messages are smaller than the record chunks produced by those
tasks, communicating these two assignments separately creates a race condition; the execu-
tor may send record chunks to its assigned verifiers before the coordinator can inform them
of the assignment, causing them to falsely believe they are faulty.

To avoid this, tasks are assigned using a coordination-free scheme (lines in Al-
gorithm @ V Pco sends signed task assignment messages to both executors and verifiers
of the form (t, F,7), where t is the task to be executed by E € EP and verified by V P;.
The executor F receives f + 1 signed assignments for task ¢ from different verifiers in the
coordinator before executing t. As record chunks are generated for ¢, the task assignment
messages (signed originally by verifiers in V Prp) are prepended to each chunk and sent
to V P;. Likewise, verifiers in V P; begin computing outputSize(¢) upon receiving f + 1
assignment messages, in order to overlap verification and execution. Verifiers in V P; each

ensure the assignment messages were signed by V Poo processes.

Output Flow: EP +— VP +— OP

As an executor computes a task, it sends each record chunk C' to the assigned verifiers V F;,
alongside a digest o(C) [P3] using non-equivocating multicast (lines in Algorithm [6)).
The final chunk for a task is tagged to signal its completion.

Verifiers independently check that they received a valid digest for C' and verify the
records in C are correct. Chunks are buffered until verification is complete before forwarding
to downstream processes. To reduce message sizes, the leader verifier sends (C, o (C)) to the

process in OP, while every other verifier sends only o(C). An output process accepts C' if
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Algorithm 6 Task Flow protocol.

1 // [P1] Coordinator receives task from input process
2 Void onRecvTask(Task t) {

3 if (!validTask(t)) return; // t¢T

4 t.timestamp = consensus(t, getTimestamp())// Linearize
5 // [P2] Broadcast state updates and assign computations
6 if (hasStateUpdate(t)) broadcast(t);

7 if (hasComputation(t)) {

8 <e, vpi> = getNextExecutorAndVP();

9 send (e, <t, e, vpi>);

10 multicast(vpi, <t, e, vpi>);

11 startReassignmentTimeout (t) ;

12}

13 }

14 // [P2] All other workers receive f+1 copies from VPco
15 Void onRecvStateUpdate(Task t) { applyStateUpdate(t); 1}
16 //[P2] Verifier in VP, receives f+1 copties from VPco

17 Void onRecvAssignment (TaskAssignment <t, e, vpi>) {

18 if (!validAssignment (<t,e,vpi>) || !'hasComputation(t)) return;
19 numRecords [t] = outputSize(t);
20 }

21 // [P2] Ezecutor receives f+1 copies from VPco

22 Void onRecvAssignment (TaskAssignment <t, e, vpi>) {

23 if (!validAssignment (<t,e,vpi>) || 'hasComputation(t)) return;
24 // [P3] Send output to assigned wverifiers

25 for (chunk in compute(t)) {

26 multicast (vpi, chunk);

27 nonEquivocatingMulticast (vpi, o(chunk));
28 %}

29 }

it receives f + 1 matching digests (including the one that accompanied C') from the same

verifier sub-cluster [P4].

7.4.2 Detecting Failures

Failures manifest where messages flow between fault tolerant verifiers and processes without

fault tolerance.

Application-Specific Failures

Algorithm [6]and Algorithm [7]show the verification protocols run by the verifiers in the Task
Flow and Output Flow, respectively.

Task Verification. MISMATCH caused by Byzantine I P in [P1] is handled by validating
input tasks before distributing them (isValid() on line [3| in Algorithm [6). Byzantine
executors can also cause MISMATCH failures in [P3] by sending chunks that correspond to
invalid tasks. Verifiers check that the task corresponding to every chunk has been assigned
to that executor and verifier sub-cluster (line [35|in Algorithm (7).

Record Chunk Verification. Records in every chunk are verified against MISMATCH and
DUPLICATION (lines in Algorithm [7)). Each record is checked for validity and whether
it originates from the correct task. Finally, the records are verified to be in sorted order by

applying happensBefore() to every adjacent pair of records.
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Algorithm 7 Verifier Output Flow protocol.

30 // [P3] Verifier recetives from ezecutor

31 Void onRecvRecords (RecordMessage msg, String digest) {
32 TaskAssignment <t, e, vpi> = msg.getAssignment ();

33 Executor sender = msg.getSender();

34 RecordList chunk = msg.getChunk () ;

35 if (!'validAssignment(<t, e, vpi>, sender)

36 || digest != computeDigest (chunk)

37 || 'verify(chunk, t, e)) {

38 markByzantineExecutor (sender) ;

39 allChunks[t].clear () ;

40 reassignAllTasks (sender) ;

41 } else if (chunk.taskFinished()) {

42 cancelReassignmentTimeout (t);

43 sendDownStream(t, allChunks[t].append(chunk));

4  } else A{

45 resetReassignmentTimeout (t);

46 seenRecords [t] += chunk.size();

47 allChunks [t].append (chunk) ;

48 %

49 }

50 Bool verify(RecordList chunk, Task t, Executor e) {
51 // ensure t is ongoing and chunks are sorted

52 RecordList prevChunk = allChunks[t][-1];

53 if (prevChunk != null && (prevChunk.taskFinished ()
54 || 'happensBefore(prevChunk[-1], chunk[0])))
55 return false;

56 for (r in chunk) // ensure all chunks are walid

57 if ('isValid(r, t) || 'happensBefore(r, next(r)))
58 return false;

59 if (chunk.taskFinished()) // ensure nothing is missing
60 if (seenRecords[t] + chunk.size() != numRecords[t])
61 return false;

62 return true;

63 }

Inter-Chunk Ordering. A Byzantine executor can attempt to hide DUPLICATION across
chunk boundaries, for example by sending a correct chunk twice. Verifiers protect against
this by comparing the last record in the previous chunk with the first record of the newly
received chunk, using the happensBefore () operator (lines in Algorithm .

Missing Records. Finally, OMISSION is detected by comparing the number of records sent
by an executor with the true number of records corresponding to the task when its final
chunk is received. The true count is available from outputSize () which runs asynchronously
while the executor produces records (line [19|in Algorithm |§[)

Generic Protocol Failures

Generic failures range from impersonating processes to sophisticated attacks by different
Byzantine processes cooperating across multiple phases in order to prevent output and

compromise liveness.

Speculative Task Reassignment. Byzantine executors can cause OMISSION faults and
compromise liveness by responding to most messages but neglecting to send a final chunk,
making them indistinguishable from a correct executor working on a difficult task. We
address this issue using a speculative reassignment scheme. In the case where the final

chunk is not marked or no output is received at all, when sufficient time passes after A,
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the task times out (line [L1{in Algorithm @ and V Pgo assigns the task to another executor.
Verifiers accept results from whichever executor finishes first. To avoid tying up all of EP on

one large task, the timeout duration for a given task is increased using exponential backoff.

Faulty Verifiers € QOutput Processes. A faulty verifier can compromise liveness by
never forwarding chunks to OP when it serves as leader of its sub-cluster. If an output
process receives f + 1 digests o(C) from V P; but does not receive a matching chunk C' in
some time after A has passed, it multicasts messages to V P; to report a negligent leader.
When verifiers receive a negligent leader report, they initiate an election for a new leader,
and the new leader sends C' instead.

However, a negligent leader report is not sufficient to conclude a verifier is faulty due to
the possibility of faulty output processes. Since there can only be f failures in V' P;, verifiers
track which leaders have been reported and assume an output process is Byzantine if it
reports f + 1 different leaders in the same sub-cluster. Finally, to avoid spurious reports
due to innocent network delays in communicating chunks, correct output processes apply

exponential backoff to their timeout duration after each negligent leader report.

Limited Equivocation. Equivocation occurs if a faulty process sends different messages
to different verifiers in a sub-cluster when it was expected to send identical messages. This
is expected in three situations: (1) In [P1] when an input process sends tasks to V Pco; (2)
In [P3] when an executor sends record chunks to assigned verifiers of a task; and, (3) In
[P4] when an output process sends negligent leader reports to all verifiers in the sub-cluster
that sent chunk digests.

In [P1], equivocation by an input process does not affect the system because V Pco
performs a Byzantine agreement protocol to linearize tasks, and conflicting task messages
will simply not be agreed upon. Similarly in [P4], equivocation by an output process has
no effect since f + 1 verifiers must initiate a leader election.

Finally, equivocation in [P3] is avoided by requiring executors to send chunk digests
using non-equivocating multicast, and having correct output processes that receive at least
one but fewer than f+ 1 digests o(C) send a report containing o(C') to the verifiers, similar
to negligent leader reports. Upon receiving the report, correct verifiers which have chunk
C broadcast it to the rest of the sub-cluster. The verifier that had not previously received
C but had received ¢(C) now processes C as if it were sent from the original executor,

eventually forwarding a digest to the output process.

7.4.3 Dynamic Role-Switching

The task execution workload and the verification workload can remain incongruous across
various scenarios, impacting processing throughput. For example, tasks producing few re-
sults can leave verifiers idle despite executors being busy. Moreover, executors failing and

leaving the system can drop processing throughput until new executors join the cluster.
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To maintain throughput in such situations, verifiers can switch roles. When verifier
resource utilization is low and there are many outstanding computation tasks, V Poo assigns
tasks to verifiers from an underutilized sub-cluster V' P; as if they were executors, and their
output is routed through another sub-cluster V P;. Verifiers in V P; finish their verification
work and then execute assigned tasks. In the meantime, V Poo avoids assigning V P; as

verifiers of tasks.

7.5 Safety and Liveness

This section proves correctness guarantees of OSIRISBFT.

7.5.1 Safety

OsIRISBF'T satisfies safety; every correct output process observes records corresponding to

a legal sequential execution of correct tasks submitted by input processes.

Lemma 7.5.1. The Task Flow results in a globally consistent ordering of tasks and task

assignments to executors.

Proof. In [P1], input processes act as clients to V Poo in a Byzantine agreement protocol
(correct by [6]), hence the tasks are safely linearized and correct verifiers agree on which
executor is assigned the task in [P2]. A correct executor only accepts task assignments
accompanied by f + 1 signatures, hence it can never be fooled into performing incorrect
tasks. Correct executors and verifiers have a consistent view of task ordering and assign-
ment, because network messages cannot be reordered and reassignment does not occur until
after A has passed, so initial task assignment messages are received strictly before reassign-
ment messages. Furthermore, correct processes in W P have a consistent view of the state.
Monotonic timestamps mean that if a correct process receives f 4+ 1 copies of a task with
timestamp k before receiving sufficient copies of a task with timestamp k — 1, the process
simply waits to receive tasks in order before executing. A correct process receiving f+1 cor-
rectly timestamped task assignments before the corresponding state update simply applies

the state update before performing the computation. O

Lemma 7.5.2. Let ty,ta,... be the global (linearized) ordering of tasks submitted by IP,
where Vi, t; € T. Let s, € S be the state obtained by applying all state updates from tasks
t1,...,t to the initial application state in order.

Correct verifiers send OP a sequence of records R corresponding to a task t if and only

’LfR = A(St,t).

Proof. By Lemma all correct processes have access to s; during execution of t. Write

R as a concatenation of k chunks, R = R1|Rs|...|Ry, with chunk R; consisting of [ records
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ri1| ... |riy. By Algorithm [7 verifiers forward R to OP whenever the following hold:

k1
A /\ isValid(r) (7.1)

i=1j=1

k 1-1

/\ /\ happensBefore(r;;, 7i(j+1)) (7.2)
i=1j=1

k—1

/\ happensBefore (i, 7(i4+1)1) (7.3)
=1

Zk:

Z |R;| = outputSize(t) (7.4)

(2

By (1), for all r € R, r € A(st,t). Hence we can write {r : 7 € R} C {r:r € A(s:1)}.
By (2) and (3), R is totally ordered according to <, so every element of R is unique and
we can write [{r : » € R}| = |R|. Finally, by (4), |R| = |A(s,t)|, and we get {r : r €
R} = {r € A(s,t)}. Since both R and A(s;,t) are totally ordered according to <, we have
R = A(sy,t). O

Corollary 7.5.1. Correct output processes only observe correct records.

Proof. We prove this by contradiction. Suppose a correct output process O observes an
incorrect sequence of records. As every sequence is made up of chunks, O must observe an
incorrect chunk R;.

To accept R;, O receives R; and f digests o(R;) from f + 1 verifiers in the same sub-
cluster. This implies either a correct verifier forwarded an incorrect chunk, contradicting

Lemma [7.5.2 or there are more than f failures in the same sub-cluster. O

Theorem 7.5.3. Every correct output process observes records corresponding to a legal

sequential execution of tasks submitted by correct input processes.

Proof. By Corollary there is a sequence of tasks T" with corresponding states S such
that correct output processes only receive records corresponding to A(s,t) for t € T.
By Lemma all correct tasks are consistently ordered and successfully distributed to
executors. Correct verifiers reject records corresponding to unassigned tasks and hence T
contains only correct tasks submitted by an input process.

Furthermore, correct verifiers have a consistent view of the ordering of tasks when veri-

fying A(s,t). Therefore, Vi € T, A(sy,t) follows a legal sequential execution of T'. O

7.5.2 Liveness

Reliable links alongside partial synchrony guarantee that sent messages are always delivered

without reordering. This constrains potential liveness issues to Byzantine behavior from
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processes, namely full or partial unresponsiveness leading to OMISSION failures. We begin

by proving that such failures cannot occur.
Lemma 7.5.4. If there is a non-faulty executor in EP, every correct task is executed.

Proof. Let t be a correct task and suppose for contradiction that ¢ is never executed. By
Lemma t is correctly distributed to an executor E. If E is correct it will execute ¢, so
FE must be faulty.

But then f+1 correct verifiers in V Poo will eventually reassign t to a different executor,
succeeding once again due to Lemmal[7.5.1] If any other executor is correct, ¢ will be executed
after enough reassignments. Hence, ¢t would remain unexecuted only when V Poo cannot
find a correct executor to reassign ¢. This means all executors must be faulty, which is a

contradiction. O

Lemma relies on a non-faulty executor in EP. Without this assumption, it is
impossible to tell whether all executors are faulty once ¢t has been assigned to every executor
because the length of a task is not known a priori. To guarantee liveness in this worst case,
after a final timeout V Pop can always reassign t to a verifier sub-cluster, where at least
f+1 correct processes execute it and skip to [P4] in the Output Flow. In practice, however,
executors can be assumed Byzantine after a sufficiently long timeout and failed over.

Using Lemma Lemma and our assumptions about the underlying network,

we can now prove liveness.

Theorem 7.5.5. All correct output processes receive output records for every correct task

submitted by input processes.

Proof. The underlying network is partially synchronous and messages are delivered reliably,
thus executors can successfully forward output records to f + 1 verifiers. Additionally by
Lemma [7.5.2] verifiers will successfully forward output records to the output processes.
Finally, by Lemma every correct task is executed. Therefore, all output records will
be received by f + 1 verifiers whether they are generated by a correct executor or by the

verifiers themselves. O

7.6 Evaluation

We seek to understand how OSIRISBFT affects performance and fault tolerance in realistic

processing scenarios.

System Details. All experiments were conducted using a 40-node cluster with each node
containing 8 logical cores and 6GB RAM, implemented as Docker containers like in [160].
Nodes are distributed among a testbed of machines connected by a Mellanox 100Gbps
Infiniband network (0.075ms TCP ping latency), each with a 2-socket Intel Xeon Gold 6242R,

112



—$-Kauri --%- Basil —@—OsirisBFT -M-ZFT —&—RCP

ol0Kp—o—e—o

?

P N

%1}« *9

g x

2 -

D e 0 ,

481632 124 81632 124 81632 12481632
n n n n
(a) State Updates. (b) Anomaly Detection.  (c¢) Motion Planning. (d) Video Analysis.

Figure 7.5: Throughput scalability.

CPU. All experiments have a single node acting as both IP and OP, and the remaining
nodes allocated to W P.

OsirisBFT Implementation. OSIRISBF T is implemented in approximately 3500 lines of
C++420 code. Regular communications use RDMA RC [I18] via the ibverbs library, the
non-equivocating multicast implementation follows open-source code for Mu [7], and the
Fast & Robust algorithm [6] is used for consensus. Processes use one CPU core for network
operations, and the rest for cryptography and executing application tasks (executors) or

verifying results (verifiers).

Baselines. We compare OSIRISBFT performance against a baseline with zero fault toler-
ance (ZFT), as well as a replicated computing processing architecture (RCP) based on the
RSM philosophy of replicating computation tasks. In ZF'T, I P sends tasks to a coordinator
worker in W P, which distributes the tasks to other workers who execute A and simply for-
ward the results. BFT processing systems like Medusa [65] and others [198, [64] 169] target
narrow application models such as map-reduce or lack open-source code, and state-of-the-
art RSM systems like Kauri [I60] focus on consensus and are inappropriate for heavyweight
computations. Therefore, we implement RCP using the same network and consensus al-
gorithms as OSIRISBFT to capture the essence of the replicated processing design while
ensuring prior works are represented fairly. Every worker is replicated to create sub-clusters
of size 2 f+1, with a designated coordinator sub-cluster W P that linearizes tasks from I P
and distributes them among the other sub-clusters to be executed. The worker sub-clusters
and OP only accept messages that are sent from f + 1 processes in a sub-cluster.

ZFT, RCP, and OsIRISBFT all use a fully replicated data store since execution is
bottlenecked by computations and not state updates. To confirm this, we ran write-only
workloads on state-of-the-art BFT state management solutions Kauri [160] and Basil [200],
as well as OSIRISBF T. Figure[7.5a]shows the results for different cluster sizes. The data store
in OSIRISBFT (and therefore the baselines) performs better as it does not incur overheads

from transactional safety (Basil) or hashing blocks (Kauri), while also leveraging RDMA.

Applications. We consider three applications to evaluate performance under diverse con-

ditions.
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Anomaly Detection: Anomaly Detection computes anomalous subgraphs that emerge as
a result of graph updates [63]. We built the application on top of OSIRISBFT by integrat-
ing components from state-of-the-art pattern matching systems [192) [17] with verification

operators implemented in only 100 lines of code.

Motion Planning: Motion Planning solves Mixed Integer Programs (MIP) to determine
routes for e.g., airplanes [166] and robots [187], where output failures can lead to human
harm. This is a batch-processing workload with no underlying state; tasks are drawn from
a set of 107 standard MIP instances [62]. Executors use the state-of-the-art SCIP suite [30]
to solve MIP instances. In OSIRISBFT experiments, SCIP is configured to append a proof
of optimality or infeasibility to each record [56]. The verification operators use built-in
SCIP methods for validating the proof.

Video Analysis: This application operates on frequently updating video feed and peri-
odically computes pixel clusters useful for image segmentation and motion detection [22,
227, 38 for, e.g., security cameras, where Byzantine fault tolerance is desirable. It uses
clustering [IT3] where executors return the centroids of each cluster, and verifiers check

the optimality of centroids.

Methodology. Experiments are run 5 times and their results averaged to account for
variance. Throughput experiments measure average throughput (output records per second)
over b minutes, with an initial 30 second warm-up period. I P submits tasks to WP in
batches, and results are streamed continuously to OP. Except where specified otherwise,
experiments are run with f = 1 and 1MB record chunks. In Anomaly Detection, I P streams
1K tasks per second, and EP finds 6-cliques missing 2 edges in the Orkut graph [225],
common inputs in previous work [205] 192]. In Video Analysis, I P streams 1K state updates
per second and 5 computation tasks per second. In Motion Planning, I P streams 1K tasks
per second. Dynamic role-switching is enabled in most experiments, and executions begin
with |WP|/(2f + 1) verifier sub-clusters. OSIRISBF'T converges to a stable number of sub-
clusters during the warm-up period. Timeout values are calibrated empirically between 500
milliseconds and 5 seconds for each workload, necessary due to the complexity of the queries

(tasks can take hundreds of seconds).

7.6.1 Graceful Execution Performance

We measure how output record throughput scales in OsiRISBF'T by varying the size of
n = |WP| between 1 and 32 nodes for each of the three applications. Figure shows
the results. OSIRISBF'T scales nearly as well as ZFT, with 1.2-4x lower throughput. The
performance gap between ZFT and OSIRISBFT decreases as n grows, with ZFT having
4% higher throughput at n = 4 but only 1.4x at n = 32 (Video Analysis). The other
applications exhibit similar behaviour: in Motion Planning, ZFT initially has 2.3x higher
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Figure 7.6: Throughput scalability across different Anomaly Detection workloads.
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Figure 7.7: (a): effect of role-switching on Anomaly Detection workloads; (b):
throughput-latency curve as the number of tasks submitted per second increases.
throughput at n = 4 but 1.4x at n = 32, whereas the difference is 3.1x to 1.6 x for Anomaly
Detection. This aligns with our theoretical analysis indicating OSIRISBFT scales in O(n— f)

instead of O(n/f), as the relative cost of the O(f) overhead reduces as n grows.

Finally, OsIrRISBF T outperforms RCP in all workloads, achieving 1.9-2.3x higher through-
put at n = 32. The performance difference can be attributed to lower parallelism in RCP;
at n = 32 RCP has 10 parallel worker sub-clusters while OSIRISBFT varies between 13 and
25 parallel executors based on how many verifiers switch roles.

OsIrRISBFT scales comparably to ZFT and scales better than RCP. OsIRISBFT can

reduce the performance penalty of fault tolerance relative to ZFT by scaling out.

7.6.2 Bottleneck Analysis

We performed detailed experiments to study performance across workloads. Results for
Anomaly Detection are summarized below. By choosing appropriate queries from the liter-

ature, we emphasize stress on the CPU or the network, obtaining three workloads:
Medium CPU & Medium Output (MM): Listing instances of a dense size-6 pattern
in the Orkut graph [225], a fairly expensive query with fairly large output.

Low CPU & High Output (LH): Listing 3-hop paths in Amazon Products [I10], a com-

putationally cheap query that creates massive result sets, to identify network bottlenecks.
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High CPU & Low Output (HL): Listing 6-cliques in the Orkut graph [225], a compu-

tationally expensive query with relatively few results, to identify CPU bottlenecks.

Figure [7.6]shows the scalability on these workloads. As before, OSIRISBF T scales nearly
as well as ZFT, achieving 1.4-3.7x lower throughput, with the gap closing as n grows.
Drilling down, we notice that MM and LH lead to worse scaling than the low output
workload HL. By profiling network and CPU usage of the workloads in ZFT and OsirIsSBFT
at n = 32, we discover that bandwidth usage on the link between OP and W P is similar
during the high output workloads. In OSIRISBFT W P sends messages to OP at a rate of
2.2GB/s in LH, 2.0GB/s in MM, but 1.8GB/s in HL, and in ZFT the rates are 3.4GB/s
in both LH and MM, and 2.7GB/s in HL. Meanwhile average CPU usage of executors in
OsIrRISBFT and ZFT is 93-95% during HL but 79-84% in LH and MM.

Finally, comparing OSIRISBFT to RCP shows that with different workloads, OSIRIS-
BFT achieves 1.5—4x higher throughput at n = 32, due to better parallelism. We observe
that in network-bound LH, RCP has 2.1x/1.5x lower throughput than ZFT/OsIRIsBFT,
since parallelism is least important, but 6.5x/4x lower than ZFT/OSIRISBFT in CPU-
bound HL, where parallelism is most important. This follows our performance analysis in
Section as OsIRISBFT is CPU-efficient.

Locating the Network Bottleneck. Since output rates during LH and MM are nearly
identical and higher than HL, and CPU utilization is low, we confirm these workloads
are bottlenecked by record communication in both OSIRISBFT and ZFT. Importantly,
this bottleneck only occurs at the link to OP, where records converge. The replicated
communication between executors and verifier sub-clusters is parallelized over multiple links,
and avoids this bottleneck. To further support this claim, we fix n = 32 and vary system load
by controlling the rate of task submission between 100 per second and 100K per second,
measuring task execution latency and output record throughput. Figure [7.7D] shows the
results.

In LH and MM, heavy task loads severely impact latency as network bandwidth to
OP saturates. Increasing from 10K to 100K tasks per second leads to slim increases in
throughput compared to the increase in latency. However, in the CPU-bound HL workload
OsIRISBFT continues to achieve higher throughput as load increases. Mean latency was
not affected from 10K to 100K tasks/sec since tasks in HL are expensive, and the cluster

has sufficient parallelism and bandwidth.
7.6.3 Dynamic Role-Switching

We investigate whether role-switching balances verification and execution by comparing the
throughput with executions where verifier sub-clusters are kept static (i.e., verifiers cannot
switch roles). Figure shows the average throughput of the static executions, and plots
the throughput over 2 minutes of execution with dynamic role-switching. The best static

configuration is 4 sub-clusters, with 5 sub-clusters leaving verifiers idle and fewer than 4
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Figure 7.8: Performance with Byzantine faults.
sub-clusters causing a verification bottleneck. The role-switching execution began with 5
sub-clusters but settled at 4 during its warm-up phase. Two other role-switches occur at
near 45 and 95 seconds to transition from 4 sub-clusters to 3 when the verification workload
dips due to a few consecutive batches of cheap tasks, then back to 4 sub-clusters when output
records become too many to handle. Overall, dynamic role-switching results in 11% higher

average throughput and 31% higher peak throughput than the best static configuration.

7.6.4 Performance Under Failures

Ezxecutor Failures. OSIRISBFT theoretically tolerates the failure of all executor processes.
We investigate the behaviour of OSIRISBF'T when executors fail by injecting output failures
in every process from EP. Figure shows the throughput and bandwidth observed at
OP during an execution of MM with f = 1, |[VP| = 15 and |[EP| = 16. At 45 seconds,
each executor corrupts the final record in the next chunk it outputs to cause a MISMATCH.
The failures are detected quickly, and throughput does not drop to 0, because 3 verifiers
had previously switched roles to act as executors. OSIRISBF'T automatically recovers to
half its previous throughput by 61 seconds, as 6 more verifiers switch roles to make up for
faulty executors. We repeated this experiment with other failure types and observed that
OsIRISBFT always recovers to approximately half its previous throughput seconds after

fault detection.

Verifier Failures. Faulty verifiers mainly affect performance when sub-cluster leaders do
not forward chunks as expected and require OP to report them. We repeat the previous
experiment but instead of faulty executors, verifier sub-cluster leaders do not send chunks
to OP. We observe that throughput is only affected until a new leader is elected, and
OsIRISBFT recovers to the same level since the executors are still correct.

Fault Scalability. We evaluate how OSIRISBFT copes as more possibly faulty verifiers
must be tolerated. Figure [7.8b] compares executions of MM by OSIRISBFT and RCP with
n = 32 and varying fault tolerance levels f. OSIRISBFT with role-switching ran with up
to 2 verifier sub-clusters and 9-20 executors. We observe OSIRISBFT executing with f =6
achieves 2.7x higher throughput than RCP with f = 2.
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7.7 Conclusion

We presented OSIRISBF'T, a verification-based Byzantine fault tolerant processing archi-
tecture for distributed task-parallel applications that does not replicate computation tasks.
We formalized the application failures and developed generic verification operators to cap-
ture the required application semantics for verification. OSIRISBFT incorporates efficient
verification protocols that capture Byzantine failures with little coordination. OSIRISBFT
does not replicate computation tasks, hence delivering high processing throughput and scal-
ability, for the first time allowing the performance gap between BFT and unreliable systems

to close through horizontal scaling.
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Chapter 8

Related Work

This thesis leverages insights from different domains and spans several literatures. Here,
previous work in these domains and literatures is organized thematically and discussed

critically.

8.1 General-Purpose Graph Mining Systems

Several general-purpose graph mining systems have been developed [205], 219, [TTT], [77, [146),
45). Arabesque [205] is a distributed graph mining system that follows a filter-process model
developed on top of map-reduce. It proposed the “Think Like an Embedding” (TLE) pro-
cessing model. Pangolin [52], Kaleido [235], and Tesseract [34] all adopt this model, and
differentiate themselves through support for GPUs, disk spilling, and streaming graphs.
Fractal [77] extends TLE to the concept of fractoids, which expose parts of the user pro-
gram to the system; in conjunction with depth-first exploration, fractoids allow the system
to more intelligently plan its execution. G-Miner [45] is a task-oriented distributed graph
mining system that enables building custom graph mining use cases using a distributed task
queue. RStream [219] is a single machine out-of-core graph mining system that leverages
SSDs to store intermediate solutions. It uses relational algebra to express mining tasks as
table joins. SumPA [95] enhances batching in pattern-aware matching plans by combining
the input patterns into abstract patterns in order to eliminate redundancies during explo-
ration. AutoMine [146] compiles input patterns into exploration programs consisting of set
operation schedules. While AutoMine batches the schedules of multiple input patterns, the
schedules remain oblivious to the pattern substructures and symmetries, and hence end up
exploring redundant matches, as shown in Section [5.6.6]

As discussed in Section none of these systems are fully pattern-aware the way
PEREGRINE [I14] is: these systems perform unnecessary explorations and computations,
require large memory (or storage) capacity, and lack the ability to easily express mining
tasks at a high level. While Fractal uses symmetry breaking for pattern matching use case,

other applications like FSM and motif counting are not guided by symmetry breaking,
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and hence they end up performing unnecessary explorations. Similarly, AutoMine also does
not employ symmetry breaking for any of the use cases, requiring users to filter duplicate
matches by individually examining every single match when enumerating patterns. Lack of
full pattern-awareness not only makes these systems slower, but also limits their applicability
to more complex mining use cases.

More recent works have adopted the pattern-aware philosophy of PEREGRINE [114], and
propose generic runtime techniques for improving graph mining performance based on input

patterns. These techniques can be classified as follows.

Exploration Strategies. Several works propose hybrid breadth-first and depth-first tech-
niques for graph mining in order to achieve high parallelism from breadth-first exploration
while limiting memory use [51, 47, [50, 208]. The high-level idea in all these works is to
chunk explorations: perform a fixed number of extensions in breadth-first manner to obtain
a chunk of partial matches, and traverse the chunks in depth-first manner. To enable this,
they analyze input patterns and the relationships between them in the same manner as
PEREGRINE [114] and SUBGRAPH MORPHING [116].

Contigra [44] develops strategies for graph mining runtimes to exploit containment con-
straints in graph mining applications. Making such constraints transparent to underlying
systems remains a challenging problem, as anti-vertex is currently the only declarative con-

struct for expressing constraints on subgraph neighbourhoods.

Using Disks. RStream [219] is a general-purpose disk-based graph mining system that
combines a relational data model with traditional graph processing techniques to allow
mining graphs on a single machine without exhausting memory. On the other hand, RStream
can easily exhaust disk space due to its breadth-first model since it stores matches in
uncompressed tables. Kaleido [235] seeks to remedy the disk exhaustion problem with a
compressed sparse match data structure that more succinctly stores matches.

Qiao et al [I72] also identified this “output crisis”, but in the context of subgraph match-
ing, and proposed a novel vertex-cover-based compression scheme (VCBC) to store sets of
matches on disk in compact format, as well as a distributed algorithm to automatically
and efficiently join compressed match sets to form new ones. This approach makes it more
practical to store massive match sets, and offers the practical advantage that the match sets

can act as an index of the output space to make answering subsequent queries faster.

Hardware Acceleration. Pangolin [52] is the first programmable graph mining system
to leverage GPU hardware acceleration, but it is not pattern-aware. It adopts a breadth-
first exploration model which enables it to take advantage of SIMT parallelism. To broach
pattern-awareness, PBE [96] matches patterns using GPUs, operating on partitioned graphs
to stay within the limits of VRAM. G?Miner [50] is the latest GPU-based graph mining sys-
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tem, and automatically generates CUDA code to efficiently match graph patterns on GPU.
It explicitly adopts pattern-aware optimizations such as data preprocessing and counting-
specific pruning.

There has also been work on novel hardware accelerators for graph mining, incor-
porating intelligent caches and graph mining-specific processing elements to boost effi-
ciency. FlexMiner [53] develops hardware support for existing techniques like connectivity
maps [51]. FINGERS [48] augments the large amounts of coarse-grain parallelism exploited
across processing elements with additional fine-grain parallelism within each processing el-
ement. These insights are carried to the streaming graph mining setting by PSMiner [170],
allowing for pattern-aware incremental graph mining. Other works focus on processing-in-
memory [39) 29] and near-memory [68, 202] graph mining. Shogun [222] studies how best

to schedule graph mining tasks on processing elements.

These works are all orthogonal to the issue of application-aware design. The systems
and frameworks developed in this thesis are compatible with hardware accelerators, novel
exploration styles, and compression schemes. Instead, this thesis focuses on understanding
the semantics of graph mining applications and exploiting them for performance and fault

tolerance.

8.2 Approximation

Approximation has been used extensively in specific graph mining tasks to achieve scalability
and efficiency, especially for counting matches. There is various work on algorithms for
approximate triangle counting [209, 174} 127, 194], 167], approximate motif counting [24,
93, 173, 196, 88, 139, B5], and approximate counts for arbitrary patterns [I8, [195]. These
works typically either adapt existing sampling techniques into novel parallel algorithms [209,
88, [18} [194], or propose novel sampling methods optimized for different graph settings (e.g.,
uncertain graphs [139], streaming graphs [167], semistreaming graphs [127]).

There is also work on approximation for FSM [182] [12], 104} 237, [31]. Some works [182),
12), [104] employ Markov Chain Monte Carlo sampling schemes to directly sample subgraphs
from frequent patterns by first finding frequent single-vertex patterns and then exploiting
the anti-monotonicity of frequency to guide their sampling. Other works [237, BI] begin
by sampling a representative graph from the original data graph, then run an exact FSM
algorithm on the representative graph and extrapolate the results to the original graph. Ref-
erence [237] uses a similar idea to neighbourhood sampling, called random areas sampling,
where subgraphs are sampled from the neighbourhoods of seed vertices chosen uniformly
at random, and the representative graph is the union of these sampled subgraphs. Ref-
erence [31] ensures that the representative graph has the same degree distribution as the

original graph, by first grouping vertices with similar degrees (i.e., within a similarity range
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given by a hyper-parameter 0) into buckets and proportionally sampling vertices from each
bucket. ScaleMine [2] is an exact FSM algorithm that uses an approximation phase to
compute bounds on the frequency of a pattern and thereby guide its exploration.

ASAP [I11] generalizes neighbourhood sampling, a technique developed by Pavan et
al [I67] to quickly compute approximate triangle counts in streaming graphs, to enable
unbiased approximation of counts for any pattern in a distributed graph setting. In neigh-
bourhood sampling the first edge is sampled at random, but subsequent edges are sampled
from the neighbours of a previously sampled edge. This increases the probability that an in-
dividual trial finds a match of the desired pattern, and thus reduces the number of trials for
reasonable accuracy. As [167] developed neighbourhood sampling in the context of stream-
ing graphs, ASAP also treats the graph as a stream of edges, and can support changing

graphs (i.e., the stream of edges can be infinite).

8.3 Graph Querying

Graph Query Languages. Graph query languages and their data models have been
extensively researched [2I]. SPARQL [I03] is one of the first graph query languages to
provide pattern matching alongside SQL constructs, and operates on sets of RDF triples. It
can support property graphs through [206], which translates SPARQL queries into Gremlin
queries. Cypher [86] is a query language on property graphs first developed as part of
Neodj [161] that introduced “ASCII-art” syntax to specify path patterns. PGQL [212] offers
regular path expressions in the pattern matching syntax, and introduces novel operators to
construct new graphs as the result of a query. G-CORE [20] proposes a new graph query
language using similar syntax to Cypher and PGQL, but operating in the path property
graph data model, where paths are treated as a first-class entity with labels and properties.
GSQL [75] allows for computing aggregate values from the results of graph queries for
sophisticated graph analytics. GQL [74] is a recent effort to create a standard graph query
language for property graphs. It provides several novel constructs for query expression,
such as partial edge direction restrictions and edge predicates. Gremlin [178] is a functional
graph traversal language with a simple grammar meant to facilitate embedding within a
general-purpose programming language. Unlike the SQL-like syntax, Gremlin users define
queries as trees of functions through method-chaining in a host language.

These query languages expose syntax and operators for specifying edges, paths, and
constraints on query results, but cannot easily express neighbourhood constraints. The anti-
vertex construct provides a declarative method for specifying neighbourhood constraints.
Anti-vertex is a generic concept and can be incorporated in any modern query language in
a similar fashion to our proposed extensions to Cypher.

Querying Constructs. There has also been work on subgraph query models and pro-

gramming constructs for subgraph queries.
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[85] allows expressing functional dependencies on graphs (GFD). GFDs cannot be used
to implement the anti-vertex construct, because they only constrain vertices within a match,
without access to the surrounding data graph. [83] proposes the concept of conditional graph
pattern (CGP) which enforces conditions on edges, but it cannot express absence of a vertex
like the anti-vertex construct.

Absence of entities has been studied in other contexts. Graph grammars [80] provide
rule-based mechanisms for generating and manipulating graphs, where the productions are
applied to a graph in order to obtain its derived graph when certain application conditions
are met. [97] studies negative application conditions that include non-existence of nodes and
edges in order to restrict how and where productions get applied. In relational algebra [61],
the antijoin operator is similar to semijoin, except its result contains tuples from one relation
that do not match on the common attribute from the other relation. Antijoins in SQL are
achieved using WHERE clause coupled with logical operators like NOT EXISTS, limited in
a similar manner as shown in Figure [4.2] and Figure

Graph Query Engines. The backends to graph query languages are graph query en-
gines. Recent works include PGX.D [109) [I80] using PGQL [212]; GraphFlow [120] using
Cypher [86]; and GATA [I71] using Gremlin [I78]. These works consider backend systems
details regarding efficiently executing graph queries which have few results and are typically
not aggregated. This thesis instead develops new ways of expressing graph queries through
anti-edges and anti-vertices, and analyzes graph mining applications involving massive re-

sults and requiring aggregation.

8.4 Application-Specific Graph Mining

Purpose-Built Graph Mining Solutions. These works efficiently perform specific
graph mining tasks. ApproxG [147] is an efficient system for computing approximate graphlet
(motif) counts with accuracy guarantees. [9] uses combinatorial arguments to obtain counts
for size 3 and 4 motifs after counting smaller motifs. [71] efficiently lists k-cliques in sparse
graphs and [27] is aimed at k-plexes which are clique-like structures. GraMi [82] leverages
anti-monotonicity for FSM on a single machine while ScaleMine [2] is a distributed system
for FSM that uses efficiently computable approximate stats to inform its graph exploration.
[203] is also a distributed system focusing on FSM. [233| [197] are recent works aimed at
analyzing small graphs whose edges have large attribute sets.

Several systems aim to perform efficient pattern matching. OPT [124] is a fast single-
machine out-of-core triangle-counting system whose techniques are generalized by Dual-
Sim [123] to match arbitrary patterns. [194] proposes several provably cache-friendly paral-
lel triangle-counting algorithms which provide order-of-magnitude speedups over previous
algorithms. DistTC [107] presents a distributed triangle-counting technique that leverages a

novel graph partitioning strategy to count triangles with minimal communication overhead.
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[134] is a distributed map-reduce based pattern matching system that first finds small
patterns and joins them into large ones. QFrag [190] is another map-reduce based dis-
tributed pattern matching system that focuses on searching graphs for large patterns using
the TurboISO [102] algorithm. PruneJuice [I76] is a distributed pattern matching system
that focuses on pruning data graph vertices that cannot contribute to a match. [I01] is a
scalable subgraph isomorphism algorithm while TurboFlux [125] performs pattern match-
ing on dynamically changing data graphs. [I54] presents a pattern matching plan opti-
mizer incorporated in Graphflow [I120] that uses both binary and multi-way joins. [180] is a

resource-aware distributed graph querying system for property graphs.

Subgraph Matching. There is a broad literature concerned with matching subgraphs
in large graphs according to isomorphism semantics, spread especially by the databases
community [102, [125, [123, (133, (134, (175, 172, 33, 101, B2, 17, 154, 226], but also in
systems [190, 144, [145], and high-performance computing [192), [176]. Algorithms devel-
oped in the databases community are evaluated comprehensively in a recent study [199].
Dryadic [144] leverages an intermediate computation tree structure to generate efficient code
for distributed pattern matching. GraphPi [192] uses a performance model to select efficient
matching orders for subgraph matching. These works can be incorporated in application-
aware graph mining systems since generating the subgraph set S is an expensive step in
most applications, but they are not application-aware because they do not consider the wide
array of possible graph mining aggregations.

Counting Subgraphs. A myriad of research has been conducted on algorithms for counting
motifs [93, O [T4T), 108, 151, 152, 234, 168, 173, 147). [9] uses combinatorial identities for
counting size 3 and 4 motifs. RAGE [I41] provides a method for computing edge-induced
size-4 motifs, and for converting the results to those for vertex-induced motifs. [108] uses
automorphism groups of pattern vertices to compute counts for motifs with 2-5 vertices,
while [151) [152) 234] optimize orbit-local counting using equations for arbitrary pattern
sizes. [168] computes counts for all size 5 motifs using global and local counts for smaller
patterns.

As discussed in Section none of these works are applicable for general-purpose
graph mining systems since they focus (a) only on converting counts, (b) only for certain
specific patterns, and (c) only on certain specific way to convert counts. Hence for instance,
their combinatorial strategies (e.g., scalar mobius function in [234]) cannot be generalized
to arbitrary aggregations, and they cannot generate multiple alternatives, which is crucial.
In comparison, SUBGRAPH MORPHING [116] is general and captures system-level nuances

and application-level characteristics, making it practical for graph mining systems.

Frequent Subgraphs. Works like [82] 2, 3] develop solutions for mining frequent patterns,
however none of these are pattern-based and they instead view the FSM computation in

terms of arbitrary subgraphs of the data graph.
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8.5 Byzantine Fault Tolerance

Byzantine fault tolerance is a well-studied research area. We summarize the proposed solu-

tions below.

Byzantine Fault Tolerant Data Processing. [198, [64, 65, 157, [169] enable Byzantine
fault tolerance in data processing systems. ClusterBET [198] replicates data-flow nodes in
data-flow systems 2f + 1 times. [64] replicates mapper and reducer tasks in MapReduce so
that an answer is correct when a quorum of 2 f +1 tasks achieve the same result. Medusa [65]
extends this fault tolerance to MapReduce clusters in multi-cloud environments, where
failures can affect entire data centres. [I57] also replicates MapReduce tasks and chooses
results that occur most frequently. Finally, Greft [I69] is a BFT graph processing system
that replicates vertex functions, relying on a trusted master process to detect if values differ.

These works rely on replication of core computation, limiting their scalability, while
OsirisBFT [I15] enables BFT processing without replicating application tasks.
Byzantine Fault Tolerance Protocols. Research regarding BFT consensus spans decades,
with seminal works like PBFT [41] inspiring many works that improve usability, resiliency,
and performance [42), 177, 130, 129, 214, [60, 10} 25, I, [66], 28, 228| [§]. [5] proposed the
message-and-memory model used by [6] to achieve BFT consensus with 2f + 1 replicas.
[228] divides workers into an agreement sub-cluster and execution sub-clusters; however,
both the sub-clusters replicate tasks.

More recently, the popularity of permissioned blockchains has caused a resurgence in
BFT research. HotStuff [229], Kauri [160], Fabric [19], Narwhal and Tusk [69], Damysus [73],
and others [70], [IT), 126, 122] develop efficient consensus strategies using optimized commu-
nication and transaction scheduling techniques as well as trusted components.

There has also been ample work on Byzantine fault tolerance for databases, like [213],
106, (15, 16, 165], 200} 224] that focus on serializable concurrent execution of transactions,
and [I59] BT, 87] that marry blockchain and database features.

All these works focus on consensus in the client-server model, where agreeing on an
ordering of client requests is the only consistency requirement. As such, they relate only
to the Task Flow of OsIrRISBFT [I15], where tasks from [P are linearized. However, we
target task-parallel processing and focus on computation and not state management, and
our solution ensures the computation is not replicated.

Byzantine Fault Detection. PeerReview [99] and others [98], [02] propose failure detectors
for Byzantine faults. These are modules in each node which only eventually detect simple
deviations from a protocol, whereas a faulty executor can communicate correctly with other
nodes while outputting incorrect records. OSIRISBFT [115] does not have such limitations
since all communication with downstream nodes occurs through verifiers which can detect

all output failures.
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8.6 Graph Processing Systems

Several works enable processing static and dynamic graphs [140} 89} 162, 193], 143}, 181 90,
230, 216, [76], 131, 217, 218, 184) T09]. These systems typically compute values on vertices
and edges rather than analyzing substructures in graphs. They decompose computation at
vertex and edge level, which is not suitable for graph mining use cases.

[140, B9, 162} 193, 181, 00, 236 216, (143, 223, 142, 215, 184, 109, 217] and others
primarily focus on graph processing problems that compute values on vertices and edges, as
opposed to graph mining problems that are concerned with subgraph structures. aDFS [208]
enhances the graph processing system PGX.D [109] with a hybrid depth-first /breadth-first
graph exploration strategy for pattern matching queries. On the other hand, techniques like
[132] develop custom transformations for specific subgraphs in the data graph in order to
speed up value propagation.

As explained in Chapter [2| graph processing workloads are fundamentally different
from graph mining. Graph processing applications iteratively perform matrix computations,

whereas graph mining aggregates subgraphs.
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Chapter 9

Conclusion

This thesis investigated the use of application semantics in improving general-purpose graph
mining systems, as well as how such semantics can be expressed transparently. These ques-
tions were approached from the perspectives of a general-purpose programmable graph
mining system PEREGRINE, a system-agnostic framework SUBGRAPH MORPHING, as well
as a Byzantine fault tolerant distributed protocol OSIRISBFT. Each perspective made the
case for application-aware design by advancing the current understanding of a different facet
of graph mining systems. PEREGRINE demonstrated the performance impact of employing
application-specific techniques more broadly, and provides a foundation for using input pat-
terns as a declarative query language to communicate application semantics to the system
without resorting to imperative and opaque callbacks. SUBGRAPH MORPHING studied how
application-awareness can be exploited without tightly coupling to low-level details of a
processing model, and provides techniques for generalizing theoretical application-specific
insights. Finally, OSIRISBFT exploits a fundamental algorithmic fact about graph mining
applications to develop a novel distributed architecture for Byzantine fault tolerance that
enables scalability without sacrificing safety. These works represent the first push in the
graph mining systems literature towards explicitly leveraging the user application seman-
tics to develop graph mining systems, and inspiring extensive use of application-awareness
by the community, particularly to develop novel pattern-aware graph mining and pattern
matching solutions [47, KU, 46, 04, 44), 53, 202, 222] 48, 170, 39].

As the field matures, there are several paths forward for graph mining systems research.
Up to now, significant research has been dedicated to application-aware subgraph matching
in order to generate the subgraph set .S for more complex applications, and this line of
research will no doubt continue as novel algorithms, techniques, and hardware capabilities
evolve. However as shown in Chapter [, PEREGRINE and similar pattern-based systems
are seldom bottlenecked by subgraph matching when executing complex applications, in-
stead hitting fundamental scalability limits due to the number of subgraphs that filters and
aggregations must process. Yet outside of SUBGRAPH MORPHING and OSIRISBFT, little

research has been done on leveraging application semantics beyond the backend, leaving
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gaps in application-aware frontends, middle-ends, and high-level architecture designs. This
thesis has demonstrated that application semantics are a largely untapped resource, and
the impact of application-awareness will extend beyond pattern-aware subgraph matching.

By developing novel insights at different layers of the system, more ambitious work can
be done on comprehensive systems that understand and optimize graph mining applica-
tions end-to-end, from high-level specifications through to execution. The path toward such
a system requires several key developments. First, we need richer domain-specific languages
that can fully capture the intent of graph mining applications. The pattern-based abstrac-
tions developed in this thesis are just the beginning. Future systems will extend pattern
semantics to express an even broader range of structural constraints and neighborhood
properties, allowing users to directly specify what subgraphs they want rather than writing
complex filters and callbacks. The distinction between edge-induced and vertex-induced ex-
ploration, which this thesis unified through anti-edges, hints at how many other seemingly
fundamental implementation choices could be abstracted away through the right semantic
models.

Second, these declarative specifications must be coupled with configurable execution
strategies. Users should be able to easily express their requirements around fault toler-
ance, memory usage, and parallelism through high-level knobs, and the system would then
automatically select appropriate techniques that make intelligent tradeoffs based on the
application semantics. While this thesis presented options and techniques for making such
tradeoffs, e.g., when to use verification versus replication for fault tolerance, or when to
morph patterns for better performance, making a combination of runtime choices across
the system can lead to compelling novel insights.

Finally, and perhaps most importantly, the portion of applications that requires custom
user code should continue to shrink. As pattern semantics grow richer and systems better
understand common aggregations, what users express imperatively today through opaque
callbacks will increasingly move into the declarative specification of the subgraph set S
and composable aggregation operators. By replacing the user-defined functions and filters
that dominate current graph mining programs with higher-level specifications, future graph
mining systems can better optimize execution without additional burden on users.

This vision builds on the fundamental insight of this thesis: that understanding ap-
plication semantics enables better systems. The challenge ahead is to develop even richer
semantic models that can capture more of what users want to express, while maintaining
the performance benefits demonstrated by pattern-aware designs. Application-aware design
leads not only to faster graph mining, but also to greater scalability and fault tolerance for
task-parallel, and offer more declarative interfaces that abstract implementation details out

of user programs.
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Appendix A

Anti-Vertex: (Generalizations and
Further Examples

A.1 Generalizations

A.1.1 Other Matching Semantics

The anti-vertex definition provided in Section[4.2]can be used in other matching semantics as
well, including those provided by some graph database management systems like Neo4j [161].

Homomorphism. In homomorphism semantics, m only needs to satisfy the vertex labels
and edge types, and preserve edge relationships. Hence, any data vertex with the correct
edges and labels can fulfill the anti-vertex requirement and invalidate the match, including
previously mapped vertices. C' is defined as follows.

C@ = () Nm),(@v),a)

v:(u,v)EE(p)

No-Repeated-Edge. No-repeated-edge semantics requires that m provide an injective
mapping from edges in P to edges in G. Hence, for anti-vertices, the data edges that are
already mapped by m cannot invalidate the match, but vertices from m can satisfy the
anti-vertex requirement (i.e., allow repeated vertices). C' is defined as follows.

C@ = [ N(m), (@uv),a)\mN®,(@v),a)

v:(w,w)EE(p)

A.1.2 Property Graphs

When storing and processing graph-structured data it is often convenient to consider not
only the structural information encoded by connections between vertices, but also the myr-
iad information associated with each vertex and edge. Two popular models for rich graph
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pattern ::= pattern® | a = pattern® rel_pattern 1= -[ a? type_list? len? ]->

pattern® ::= node_ pattern | <-[ a? type_list? len? ]-
| node_pattern rel_pattern pattern® | -[ a? type_list? len? ]-
> | node_pattern rel_pattern pattern™ label_list == :1]:1 label_list
> | patternt rel_pattern pattern® map = { prop_list }
> patternt ::= anti_node_pattern prop_list =k : expr | k : expr, prop_list
> | anti_node_pattern rel_pattern pattern® type_list :=:¢ | type_list | ¢
node_pattern ::= ( a? label_list? map? ) len =% |*d | *dy. . | *. . da | ¥d1 .. do
> anti_node_pattern ::= (! a? label_list? map? ) d, di, d2 €N

Figure A.1: Syntax of Cypher patterns with anti-vertex. Enhancements to the original

grammar are marked with .
data are the Resource Description Framework (RDF) [67] and property graphs [21]. Prop-

erty graphs can model more complex structures than RDF by allowing edges and ver-
tices to be associated with arbitrary key-value pairs called properties. As a result, prop-
erty graphs have gained widespread adoption by both commercial and academic graph
databases [74] [86], 212, [20].

We define property graph based on the definition in Cypher [86], while including anti-
vertices. A property graph is a graph g with additional functions p : E(p) — V(p) x V(p)
and 7™ : V(p) U E(p) — P(K x V), where K and V are sets of property keys and values,
respectively. p maps each edge to an ordered pair of endpoints, so that a pair of vertices can
have multiple edges between them. The definition of the (e, u)-neighbourhood of a vertex
v generalizes easily to property graphs by using p to obtain all edges involving v and by
considering the properties of e and u in addition to their type and labels.

Anti-vertex also naturally generalizes to property graphs. In a property graph, each anti-
vertex @ can be incident on multiple edges with directions. Thus, to transform the previous
definitions of C'(w) to fit property graphs, it suffices to intersect the (e, @)-neighbourhoods
of v for every e € E(p) where p(e) = (u,v) or p(e) = (v,u), and perform the same set
differences.

Let g and p be property graphs. The semantics with isomorphism in property graphs can
be expressed by defining C' as follows.

Cm) = () N(m@),em) N (] N(m),eu)\mV(p)
ecE(p): e€E(p):
p(e)=(v) ple)=(vm)

Similarly, semantics of anti-vertices with homomorphism and no-repeated-edge semantics
in property graphs can be defined by translating the definitions from Section [£.2.2]

To give intuition for how anti-vertex queries work on property graphs, Table shows
various subgraph queries where anti-vertices are used in different ways. The data graphs
capture social network information where vertices represent people and edges represent
LIKES and FOLLOWS relationships. The patterns contain anti-vertices, and their textual
description is provided to help familiarize with the concept by demonstrating how anti-
vertices are perceived for social network analysis. For isomorphism and no-repeated-edge
matching semantics, the resulting mappings between query vertices and data vertices are
shown in relational format.
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MATCH (a:SCHOOL)--(b:BUSINESS),
(a)--(c:FIRE_HYDRANT) --(b),
(a)--(d:FIRE_HYDRANT) --(b)

WHERE NOT EXISTS {

MATCH (a:SCHOOL)--(b:BUSINESS),
(a)--(c:FIRE_HYDRANT)--(b),
(a)--(d:FIRE_HYDRANT)--(b),
(a)--(e:FIRE_HYDRANT) --(b)

MATCH (a:SCHOOL)--(b:BUSINESS),
(a)--(c:FIRE_HYDRANT)--(b),
(a)--(d:FIRE_HYDRANT)--(b)

WHERE NOT EXISTS {

MATCH (a)--(e:FIRE_HYDRANT)--(b)
WHERE e<>c
AND e<>d
}

¥ RETURN a, b, c, d

RETURN a, b, c, d

Figure A.2: Cypher queries for the anomaly detection use case.

MATCH (a)--(b), (a)--(c), (a)--(4d), MATCH (a)--(b), (a)--(c), (a)--(d),
(b)--(c), (b)--(d), (c)--(d) (b)--(c), (b)--(d), (c)--(d)
WHERE NOT EXISTSA{ WHERE NOT EXISTS{

MATCH (a)--(b), (a)--(c), (a)--(d), MATCH (a)--(e), (b)--(e),
(b)--(c), (b)--(d), (c)--(d), (c)--(e), (d)--C(e)
(a)--(e), (b)--(e), WHERE e<>a AND e<>b
(c)--(e), (a)--C(e) AND e<>c AND e<>d

} }
RETURN a, b, c, d RETURN a, b, c, d

Figure A.3: Cypher queries for the maximal cliques use case.

A.2 Anti-Vertex in Graph Query Languages

Recent graph query languages [86, 212], (74, 20] integrate declarative “ASCII-art” pattern ex-
pressions with familiar SQL constructs. In particular, Cypher [86] is a popular graph query
language, used in both academic and commercial graph databases including Neod4j [161],
Amazon Neptune [14], and GraphFlow [120]. The anti-vertex and anti-edge constructs can
be incorporated in existing graph query languages to express complex structural and neigh-
borhood constraints as easily as standard subgraph queries. To demonstrate, in this section
we examine the ways neighbourhood constraints must currently be implemented in Cypher,
and then develop prototype extensions to Cypher’s pattern matching syntax to support
anti-vertices natively.

A.2.1 Constraining Neighbourhoods in Cypher

In this section we show how neighbourhood constraints can currently be expressed in Cypher
by continuing the earlier examples.

Example A.2.1. Consider the anomaly detection and maximal cliques use cases from

Example

1. Anomaly Detection. There are two obvious approaches to writing a Cypher query for
this problem, both shown in Figure In the first query, the problem is reformulated
as matching subgraphs with two fire hydrants that are not part of subgraphs containing
three fire hydrants. Expressing the absence of the third fire hydrant in such an indirect
fashion causes tedious repetition and increase in query sizes. This not only makes it
challenging to read and manage those queries (e.g., incrementally adjust to add new
constraints), but also makes the process of writing complex queries (e.g., with multiple
constraints) error-prone. The second query incurs less repetition in the subquery than
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the first approach, but requires users to specify additional constraints against the outer
query to achieve the desired semantics. Determining the correct constraints to ensure the
subquery does not filter too many or too few subgraphs is difficult in larger queries, as
users must visualize how their query will be matched against complex graph structures.
Both approaches lead to larger, less declarative queries involving error-prone subqueries.
Instead, the absence of another fire hydrant neighbor can be directly expressed using an
anti-vertex.

2. Mazimal Cliques. While cliques of a certain size can be easily expressed as a Cypher
query, the maximality requirement can again be expressed in two ways, shown in Fig-
ure The first query reformulates the problem as finding cliques of size k that are
not contained inside cliques of size k + 1, while the second query finds vertices adjacent
but not equal to all k£ previously matched vertices.

A.2.2 Augmenting Cypher with Anti-Vertex Semantics

Cypher pattern matching syntax allows node patterns, relationship patterns, and path pat-
terns. Since anti-vertices express absence of neighbors, they will be best expressed using
relationship patterns and path patterns. However, the anti-vertex semantics developed in
Section [£:2.2] do not consider the case where two anti-vertices are connected via an edge
(recall the assumption in Chapter 4] when anti-vertices are first introduced). This leaves
the semantics of fixed/variable-length path fragments containing anti-vertices ambiguous.
While such semantics are left for future work, we envision the grammar to be able to support
arbitrary path patterns with anti-vertices.

Hence, we develop two prototype extensions to Cypher’s pattern matching syntax: one
that allows arbitrary path patterns with anti-vertices (presented in Section , and
one that limits the grammar to the anti-vertex semantics defined in this thesis (presented
in Section . Allowing arbitrary path patterns requires fewer changes to the original
grammar, and thus easier implementation and validation in existing query engines, at the
cost of some ambiguity regarding the semantics of anti-vertices in fixed /variable-length path
patterns. Meanwhile, keeping the grammar limited requires more complex changes to the
original grammar, but has no ambiguity, and provides flexibility for future work to define
the semantics of path patterns involving an anti-vertex consistently (i.e., handle paths with
one or both endpoints being an anti-vertex consistently).

Grammar with Arbitrary Path Patterns

Following the same notation as Cypher, Figure shows an extended pattern matching
grammar that supports anti-vertices (extensions added for anti-vertex support are marked
with >). This syntax only applies within MATCH clauses of Cypher; the remainder of Cypher’s
syntax is unaffected.

An anti-vertex is defined by the anti__node_ pattern construct, which is identical to node__pattern
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> pattern ::= patternt | a = pattern™ node_pattern = ( a? Iabel_li.st? map? )
> pattern™ ::= pattern®| pre_pattern rel_pattern = -[a? tYPe_“S.t? len? ]->
> pre_pattern ::= anti_node_pattern simple_rel_pattern pattern® | <-[a? type._hst? len? ]-

pattern® ::= node_pattern ) | -[ a? type_llst?. len? ]-

| node_pattern rel_pattern pattern® label_list  :=:1]:1 |5fb5|_||5t

> | node_pattern simple_rel_pattern post_pattern map = { prop_list } _
> post_pattern ::= anti_node_ pattern prop_I!st =k : expr | k_5 expr, prop_list
> | anti_node_pattern simple_rel_pattern pattern® type_list = ;‘t \*type*_llst | t*
> anti_node_pattern = (! a? label_list? map? ) len ::* [ *d | *dy. .| *..da
> simple_rel_pattern ::= -[ a? type_list? |-> | ¥dy . . da2
> | <-[ a? type_list? |- | -[ a? type_list? |- d, di, d2 €N

Figure A.4: Syntax of Cypher patterns with anti-vertex, without arbitrary path patterns.

. Enhancements marked with . )
from the original Cypher grammar, but marked with a ! symboﬂ This construct only ap-

pears in pattern™ either by itself or accompanied by rel_pattern. We compose these frag-
ments with Cypher’s original pattern definition to allow as much programmer flexibility as
possible.

Intuitively, the syntax allows an anti-vertex to be present:

1. at the beginning of the pattern:
(ta)--

2. in the middle of the pattern:
- ( [ a) -

3. at the end of the pattern:
--('a)

Since we utilize rel_pattern as defined in the original grammar, fragments of path patterns
with anti-vertices can be expressed in this grammar. For example, the following are allowed:

(a)-[*31-('b)

(ta)--(b)
O-[*x2]1-Cta)-[*2]-0
The pattern™ separates the anti_node_pattern from pattern®, which disallows anti-vertices

at both endpoints of a relationship.

Grammar without Arbitrary Path Patterns

Here we limit the syntax to only express anti-vertices where semantics are well-defined in
this thesis. Figure shows the extended pattern matching grammar for this case.

The simple_rel_pattern is added to ensure path fragments containing anti-vertices are not
length-based (fixed or variable). simple_rel_pattern is simply rel_pattern without a len pa-

fThe ! symbol typically denotes the not operator in programming languages, which fits the meaning for
anti-vertex (data vertex not present).
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MATCH (a:SCHOOL)--(b:BUSINESS), MATCH (a)--(b), (a)--(c), (a)--(d),

(a)--(fh1:FIRE_HYDRANT)--(b), (b)--(c), (b)--(d), (c)--(d),
(a)--(fh2:FIRE_HYDRANT) --(b), (a)--(le), (b)--(te),
(a)--(!'fh3:FIRE_HYDRANT) --(b) (c)--(te), (d)--(te)
RETURN a, b RETURN a, b, c, d
(a) Anomaly Detection (b) Maximal 4-Clique

Figure A.5: Cypher queries using anti-vertex for use cases in Example

rameter. The anti_node_pattern construct only appears in pre_pattern and post_ pattern,
accompanied by simple_rel_pattern. Intuitively, pre_pattern represents the syntax fragment

(ta)--
and post_pattern represents the syntax fragments
--('a) and --(la)--

These fragments are composed with Cypher’s original pattern definition to allow as much
programmer flexibility as possible.

A pattern either begins with an anti-vertex (through pre_pattern) or a standard vertex
(through pattern®). Anti-vertices in the middle or at the end of a pattern are supported
through mutual recursion between pattern® and post_pattern. Two anti-vertices will never
form both endpoints of a relationship because pre_pattern never occurs directly before
post_ pattern.

While fixed /variable length path fragments with anti-vertex are disallowed, regular fixed/-
variable length path fragments containing node_pattern can still be expressed (same as
defined in original Cypher grammar). For example, the following are allowed:

(2)-[*2]-0O--('b)

(ta)--(b)
(a)--(1p)--(c)

A.2.3 Examples with the Enhanced Cypher Grammars

We revisit the use cases from Example[f.2.T]to demonstrate how they can be easily expressed
using the modifications to the Cypher grammar. Figure and Figure show the
example Cypher queries in Figure[4.2]and Figure[4.3|rewritten declaratively with this syntax.

Example A.2.2. Consider the anomaly detection and maximal cliques Cypher queries
from Example [A22.7]

1. Anomaly Detection. The Cypher query with anti-vertex for anomaly detection is shown
in Figure[A.5a] Instead of a long subquery which repeats most of the initial MATCH clause,
or one that must explicitly specify the matching semantics, the query directly expresses
the anomalous subgraph using an anti-vertex to denote absence of a third fire hydrant.
Anti-vertices are expressed similarly to standard vertices, including specifying labels and
properties.
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2. Mazimal Cliques. Figure shows the Cypher query with anti-vertex for finding max-
imal cliques of size 4. Previously without anti-vertex support (shown in Figure ,
the constraints induced by the matching semantics on the subgraph were explicitly en-
forced in a WHERE clause. Now, the query directly expresses the maximality constraint by
connecting all vertices to an anti-vertex, guaranteeing consistency with the underlying
matching semantics. The anti-vertex e is unconstrained, thus if any data vertex can be
mapped to e (i.e., there is a vertex adjacent to the matches for all of a,b,c,d), then the
subgraph will be discarded, as matching e would create a clique of size 5.
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(O Vertex :PERSON

1) Anti-vertex :PERSON

Table A.1: Examples with anti-vertices.

-85 FOLLOWS edge

-9, LIKES edge

—> Edge without constraints

No.| Pattern Data Description. Subgraph Results Notes
Graph (w.r.t. Isomorphism) . No-Repeated
Isomorphism
-Edge
Q1 Find a,b such that alb alb (q,p) is not a match
i) b FOLLOWs a, and s | p s |p in no-repeated-edge se-
ii) a is not FOLLOWed /LIKEd by q|p mantics
another PERSON
Find a,b such that alb alb (p,s) is not a match
i) b FOLLOWs a, and pla pla since p,s both LIKE r
ii) a and b do not LIKE another s |q s|q (s,q) is a match since
common PERSON only q LIKEs p
Find a,b,c such that alblc alblc (p»q,r) is not a match
i) b and ¢ FOLLOW/LIKE a, and plr [q Pldlq since r FOLLOWs s
ii) ¢ does not FOLLOW/LIKE an-
other PERSON
Find a,b,c such that alblc alble (q,r,s) is not a match
i) b and ¢ FOLLOW a, and plalr plalr since r FOLLOWs t and
ii) b does not FOLLOW d, and plrlq plrlq s LIKEs t
iii) ¢ does not LIKE d ql|s |r qls |r
Find a,b,c such that aTbTc alb (t,s,r) and (t,r,s)
i) a FOLLOWs b and ¢, and plals plals are not matches with
ii) a does not FOLLOW/LIKE an- pls |q pls|q no-repeated-edge  se-
other PERSON t|s |t mantics since t LIKEs
t|r|s and FOLLOWs r
Find a,b,c,d such that alblcld alblcld No matches with no-
i) a and d FOLLOW/LIKE b and plalr s [N DS B repeated-edge seman-
¢, and plr lqls tics since p and s LIKE
ii) a and d do not FOLLOW/LIKE s|qlr|p and FOLLOW q
another common PERSON s|r|q|p
Find a,b,c such that “ThbTe “TETe (p,q,r) is not a match
i) a and b FOLLOW/LIKE c, and s s since p and r both
ii) a and ¢ do not FOLLOW an- f pls f pls FOLLOW s, and q and r
other common PERSON , and alr |t alr |t both LIKE t
iii) b and ¢ do not LIKE another rlqlt rlqlt
common PERSON qlp|r qlp|r
qla|t
Find a,b,c such that alb alb (r,p,q) is not a match
i) b and ¢ FOLLOW a, and siplr s(plr since r,p,q LIKE s.
ii) the three do not LIKE a com- s|r|p s|r|p (s,p,r) is a match
mon PERSON since r,p LIKE q but s
does not LIKE q
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Appendix B

Applications with Subgraph
Morphing

We will walk through the main steps in applying SUBGRAPH MORPHING(i.e., S-DAG gen-
eration, pattern selection, and result conversion) on two graph mining use cases: Frequent
Subgraph Mining and Subgraph Counting.

24

slulw|v|| pr

t s[s[s[v Ny (v (Y

Pe tit|t T T, Ty Te

sl yuuu S[W[S[‘USSSVSSS‘U S|S|S|v

ARE el [e] J[e]e]e t[e t[t[t
wiw uju|u uju|u

44 44

(W)

‘ Costs
6"‘6 papolpelpapeley|  (4) MNI .
V‘@ %\F;i 25[15[17] 5 [6 [ 5 tables for (e) Transforming MNI
b)

al3lal21315 alternative tables of alternative
Pe Pe (b) Data (c) Pattern  patterns of p, patterns to compute MNI
(a) S-DAG for pZ graph costs for p,

Figure B.1: Frequent Subgraph Mining (FSM) with Subgraph Reshaping. Key steps in
reshaping are shown for pattern p,.

B.1 Frequent Subgraph Mining

Since FSM explores labeled edge-induced patterns, it can end up matching and computing
MNT for a large number of patterns. To simplify exposition, we consider a single pattern paE
(edge-induced 4-star). Figure summarizes the example.

The S-DAG is constructed by recursively adding the superpatterns of pZ. The resulting
S-DAG is shown in Figure Since we are dealing with labeled patterns, some of the
superpatterns can have identical structures but different labelings. Patterns py and p. in
the S-DAG show this case.
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count, (p!) =7
count,(pY) =7-9+6x1
countz(pY) = 4—-3x1

Costs
Da [P |Pe|Palpe|Pr| count(ps) =75 count(pf) =37
[EL[1]3][10[5]5]7] count(py) =24 count(pf) =9
[V.I.[20]30]12[10[ 9 count(pé) =7  count(ps) =1

~

~

(e) Transforming
(a) S-DAG for p¥, p/  (b) Data (c) Pattern (d) Counts for counts to compute
and pY graph costs alternative patterns for p¥

Figure B.2: Subgraph Counting (SC) with Subgraph Reshaping. Key steps in reshaping
shown for input patterns p,, pp and pe.

Costs are estimated for both variants of each pattern in the S-DAG. The pattern costs for
our example are shown in Figure Since MNI computations are sensitive to output size,
patterns that are estimated to produce more matches have higher costs. For example, pZ
is the least constrained pattern in the S-DAG, and hence has the highest cost. Similarly,
the other superpatterns have lower costs for the vertex-induced variants which cause fewer
matches.

Next, the alternative pattern set S is constructed using Algorithm (1} Initially, S = {pZ}.
Then we iterate over the direct parents of pZ in the S-DAG, beginning with pX. The only
child of p} is pf with cost 25 while the superpatterns of p¥ (including p}’) have combined
cost 17. As a result, S is updated to contain {p¥,p},pY,pY,pY,p £} and all these patterns
have their costs set to 0. The algorithm converges in the next iteration as the alternative
pattern set S does not change.

The matching engine explores the subgraphs that match the patterns in S. The final step
is to compute the MNI table for p¥ from the MNI results for patterns in S. To illustrate
this, consider the sample data graph shown in Figure Figure shows the MNI
tables for the alternative pattern set S. Note that pY, p/ and p}i/ do not have any matches
in this example, and hence their MNI tables are empty (not shown). Figure shows how
the final MNI table is computed from the tables for alternative patterns. Starting with an
empty table, the MNI tables are merged after permuting them using permutation functions.
Consider the MNI table for pZ. There are two subgraph isomorphisms from paE to pZ, which
lead to two permutations. The first one is the identity permutation (i.e., unchanged) which
results in 77. The second one sends the first column of the MNI table to the second, the
second column to the third, and the third column to the first. Applying this permutation
and merging the resulting table with 77 gives T5. This process continues with the next
alternative pattern p; and results in 73. There are two further isomorphisms into ps, and
one into p})/, none of which affect the final result, and the process completes with Tg.

B.2 Subgraph Counting

In this application, we are interested in counting the subgraphs that match three unlabeled
vertex-induced patterns: a 4-star, a 4-cycle, and a 4-chain. Figure summarizes the
example where the three patterns are named p,, pp and pc.

Similar to the previous example, S-DAG is constructed by recursively adding superpatterns
of those three input patterns. The resulting S-DAG is shown in Figure and the esti-
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mated pattern costs are shown in Figure In this case, since the patterns are unlabeled
and the counting aggregation is a constant time operation, the set operation time is the
primary concern. Hence, edge-induced variants of sparse patterns tend to be far cheaper to
compute than their vertex-induced variants which require additional set differences.

Using the S-DAG and the pattern costs, Algorithm [T computes the alternative pattern set
S. Initially, S starts with {p(‘l/, pX,pX}. Then, p,‘l/ is evaluated against its superpatterns
(pE, pY, pf , pE, pr). Since pY costs 20 while its superpatterns cost 30 combined, p) is
not morphed in this step. Similarly, p,‘)/ is not morphed in the next step. However, when
C = {pY, pX}, the cost of C'is 50 while the cost of the combined superpatterns (including
the variants of the patterns in C) is only 33. Hence, S is updated to replace p) and pl‘,/ with
pg, pf , and the other superpatterns, and the cost of these superpatterns is set to 0. Notice
that pY is one of the superpatterns of p, and p,. Since the original cost of the superpatterns
of pg was greater than the cost of p}z/, it would not have been morphed. However, since
the cost of superpatterns got set to 0, the new cost of superpatterns of pY reduces to 10.

Hence, S is updated once again with pZ instead of p). The final alternative pattern set S
is {p¥,pf, pE, k. pE ps}-

After matching the alternative patterns, their results are transformed back to counts for p,,
py and p.. We discuss this result conversion process next. Figure[B.2D|shows an example data
graph, and Figure shows the number of matches in the data graph for the alternative
patterns. The permutation function accounts for the subgraph isomorphisms from the origi-
nal patterns to the alternative patterns. For example, consider pattern pg whose counts can
be computed using [SM-V1] in Figure ie., |[MPY)| = |M@E)|—|M®Y)|—3x|M(pys)|
However, our alternative set contains the morphed patterns for p¥', and hence, |M(pY)] is
computed as |M (pE)| — 6 x |M(pys)|. Therefore, |M(pY)| =7 —3 —3 x 1 = 1. Counts for
pg and pl‘)/ are computed in a similar manner.
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