A Deeper Dive into Pattern-Aware Subgraph Exploration with PEREGRINE

Kasra Jamshidi
School of Computing Science
Simon Fraser University
British Columbia, Canada
kjamshid@cs.sfu.ca

Abstract

Graph mining workloads aim to extract structural properties
of a graph by exploring its subgraph structures. PEREGRINE
is a general-purpose graph mining system that provides a
generic runtime to efficiently explore subgraph structures of
interest and perform various graph mining analyses. It takes
a ‘pattern-aware’ approach by incorporating a pattern-based
programming model along with efficient pattern matching
strategies. The programming model enables easier expression
of complex graph mining use cases and enables PEREGRINE
to extract the semantics of patterns. By analyzing the patterns,
PEREGRINE generates efficient exploration plans which it
uses to guide its subgraph exploration.

In this paper, we present an in-depth view of the pattern-
analysis techniques powering the matching engine of PERE-
GRINE. Beyond the theoretical foundations from prior re-
search, we expose opportunities based on how the explo-
ration plans are evaluated, and develop key techniques for
computation reuse, enumeration depth reduction, and branch
elimination. Our experiments show the importance of pattern-
awareness for scalable and performant graph mining where
the presented new techniques speed up the performance by
up to two orders of magnitude on top of the benefits achieved
from the prior theoretical foundations that generate the initial
exploration plans.

1 Introduction

Graph mining based analytics has become popular across
various important domains including bioinformatics, com-
puter vision, and social network analysis [3,9,27,35,37,53].
These tasks mainly involve computing structural properties
of the graph, i.e., exploring and understanding the substruc-
tures within the graph. Finding specific subgraphs (also called
patterns) of a graph is the subgraph isomorphism problem,
which is NP-complete. Since the search space is exponential,
graph mining problems are computationally intensive and
their solutions are often difficult to program in a parallel or
distributed setting.

Keval Vora
School of Computing Science
Simon Fraser University
British Columbia, Canada
keval@cs.sfu.ca

PEREGRINE | is a recent graph mining system that takes a
‘pattern-aware’ approach to efficiently perform mining tasks
on large graphs [23]. PEREGRINE incorporates a pattern-
based programming model that enables easier expression of
complex graph mining use cases, and reveals patterns of inter-
est to the underlying system. Using the pattern information,
PEREGRINE efficiently mines relevant subgraphs by perform-
ing two key steps. First, it analyzes the patterns to be mined
in order to understand their substructures and to generate
an exploration plan describing how to efficiently find those
patterns. And then, it explores the data graph using the ex-
ploration plan to guide its search and presents the subgraphs
back to the user space. By doing so, PEREGRINE directly
mines the subgraphs of interest while avoiding exploration of
unnecessary subgraphs, and simultaneously bypassing expen-
sive computations (e.g., isomorphism and uniqueness checks)
throughout the mining process.

PEREGRINE’s pattern-based programming model treats
graph patterns as first class constructs: it provides basic mech-
anisms to load, generate and modify patterns along with inter-
faces to query patterns in the data graph. Furthermore, PERE-
GRINE introduces two novel abstractions, an ANTI-EDGE
and an ANTI-VERTEX, that express advanced structural con-
straints on patterns to be matched. This allows users to directly
operate on patterns and express their analysis as ‘pattern pro-
grams’ on PEREGRINE (Figure | shows Frequent Subgraph
Mining [6] implemented as a pattern program). Moreover,
it enables PEREGRINE to extract the semantics of patterns
which it uses to generate efficient exploration plans for its
pattern-aware processing model.

PEREGRINE’s efficient subgraph exploration runtime stems
from two sources: first, theoretical foundations from existing
subgraph matching research [5, 16] that generate exploration
plans; and second, advanced matching strategies aimed at ex-
ploiting pattern structures for practical system-level benefits,
chiefly by architecting the hot paths in the matching process
to avoid performance pitfalls and maximize efficiency.

IPEREGRINE source code: https:/github.com/pdclab/peregrine

Void updateSupport (Match m) {
mapPattern (m.domain ());

}

}

while (patterns not empty) {
Map<Pattern, Domain> results =
Set<Pattern> frequentPatterns

}

Bool isFrequent (Pattern p, Domain d)
return (d.support () >= threshold);

DataGraph G = loadDataGraph("labeledInput.graph");
Set<Pattern> patterns = generateAllEdgeInduced(2);

match (G, patterns, updateSupport);
results.filter(isFrequent) .keys ();
patterns = extendByEdge (frequentPatterns);

{

Figure 1: Frequent Subgraph Mining implementation using PEREGRINE’s pattern-based programming model.

In this paper, we focus on the pattern-aware subgraph ex-
ploration runtime of PEREGRINE. Specifically, we discuss
key techniques including candidate set sharing, enumeration
depth reduction, and branch elimination. Our advanced match-
ing strategies include novel concepts of neighborhood groups
and match groups. Neighborhood groups enable computation
reuse by identifying pattern vertices which can share sets of
candidate matching data vertices. Match groups further im-
prove performance by exploiting the symmetries of pattern
vertices to avoid branches in inner loops of the matching code
and reducing the exploration depth. We taxonomize patterns
into different classes based on the number of match groups
they contain, and develop fast paths in PEREGRINE that com-
pletely eliminate branches in the final stages of matching for
different pattern types.

Since PEREGRINE directly finds the subgraphs of interest,
it does not incur additional processing over those subgraphs
throughout its exploration process. Moreover, PEREGRINE
does not maintain intermediate partial subgraphs in memory,
resulting in a limited memory footprint throughout the mining
process. PEREGRINE runs on a single machine and is highly
concurrent. Evaluation conducted in [23] across several graph
mining use cases on real-world graphs shows that PEREGRINE
running on a single 16-core machine outperforms distributed
graph mining systems [7, 12, 48] running on a cluster with
eight 16-core machines. Furthermore, PEREGRINE could eas-
ily scale to large graphs and complex mining tasks which
could not be handled by other systems.

To understand the benefits of our matching strategies that
utilize neighborhood groups and match groups, we evaluate
them across different pattern matching and motif counting
tasks. Our results show that these techniques are crucial in re-
taining high performance as they speed up the exploration by
up to two orders of magnitude on top of the benefits achieved
from the prior theoretical foundations that generate the initial
exploration plans.

2 Graph Mining Fundamentals

Graph mining involves exploring connected subgraphs of in-
terest in a large data graph. Graph mining queries are diverse,
ranging from simple pattern matching and motif counting
queries where the structure of the subgraphs to explore is
fixed and known ahead of time, to more complex use cases
like frequent subgraph mining where exploration is guided
by previous results. We represent subgraphs of interest with
graph templates called patterns.

We define a match m of a pattern p as a subgraph of the
data graph that is isomorphic to p, where isomorphism is a
one-to-one mapping between the vertices of p and m such
that if two vertices are adjacent in p, then their corresponding
vertices are adjacent in m.

Since there can be sub-structural symmetries within p (e.g.,
a triangle structure looks the same when it is rotated), the same
subgraph of the data graph can be represented by multiple
different mappings from p into G. For both efficiency and
ease-of-use, graph mining systems usually explore each match
only once.

In PEREGRINE, users express graph mining tasks directly in
terms of patterns. For example, k-Motif Counting is a matter
of matching all patterns with k vertices. Frequent Subgraph
Mining, on the other hand, lists all patterns that are frequent
in the data graph, and it requires iteratively matching and
extending patterns by an edge while filtering patterns that do
not meet a frequency threshold (see Figure 1). PEREGRINE’S
pattern-aware runtime extracts the patterns involved in the
graph mining use cases, finds all of their unique matches in
the data graph, and processes the matches according to the
user’s instructions.

3 Directly Matching A Given Pattern

As patterns of interest are expressed by the graph mining pro-
gram, the runtime traverses the data graph vertices in parallel,

ExplorationPlan generatePlan (Pattern p) {
partialOrders = breakSymmetries (p);
vc = minConnectedVertexCover (p);
pc = vertexInducedSubgraph(vc, p);
matchingOrders = computeMatchingOrders (pc,

partialOrders);
matchGroups = computeMatchGroups (p, pc);
return (pc, partialOrders, matchingOrders,
matchGroups) ;

Figure 2: Computing exploration plan.

finding all matches for the input patterns originating from
each vertex. Since patterns are much smaller than the data
graph, PEREGRINE analyzes the input patterns to develop an
exploration plan. In addition to well-established techniques
from the literature [5, 16,24], PEREGRINE performs novel
pattern analysis to optimize the exploration plan.

Figure 2 shows how the exploration plan is computed from
a given pattern p, and Figure 3 shows the exploration plans for
example patterns p, and pj. First, to avoid duplicate matches
we break the symmetries of p by enforcing a partial ordering
on matched vertices [16]. For p, we obtain the partial ordering
u1 < uz and up < ug, and for p, we obtain u; < u,.

In the next step, we compute the core of p (called pc)
as the subgraph induced by its minimum connected vertex
cover . In our example, pc for p,, is the subgraph induced by
up and u4. Given a match m for pc, all matches of p which
contain m can be computed from the adjacency lists of vertices
in m via set operations. The candidate set for u; in p, is
adj(m(up)) Nadj(m(uy)), for instance.

PEREGRINE performs further analysis to optimize the
matching process for both core and non-core vertices beyond
a naive depth-first traversal of the pattern vertices. It is im-
portant to note that this analysis is performed on the pattern
graph only, i.e., all the computations are applied on p (and its
derivatives). Hence, exploration plans are computed quickly
(often in less than half a millisecond).

3.1 Matching Orders

To simplify the problem of matching pc, we generate match-
ing orders to direct our exploration in the data graph. A match-
ing order is a graph representing an ordered view of pc. The
vertices of the matching order are totally-ordered such that
the partial ordering of p restricted to pc is maintained. This
allows matching pc by traversing vertices with increasing
vertex ids without canonicality checks.

We compute matching orders by enumerating all sequences
of vertices in p¢ that meet the partial ordering, and for each

2 A connected vertex cover is a subset of connected vertices that covers
all edges.

Py Partial Orders Matching Orders

O DI
" u, < uy T,
@ Vertex Cover | Match Groups
{uy, u} {uy, uz}
Py Partial Orders Matching Orders
u; < u,

U Uz

Vertex Cover | u,

{uy, up, ug}

@ Match Groups| u; u; u,
{uy}, {us} U 0 W

Figure 3: Examples of pattern graphs and their analysis.
Neighborhood groups and match groups are equal in
unlabeled patterns.

sequence we create a copy of pc where the id of each vertex
is remapped to its position in the sequence. Then, we discard
duplicate matching orders. For our example pattern p,, its
core substructure has only one valid vertex sequence, {u2,us },
so we obtain only one matching order. Note that there can
be multiple matching orders for a given pc depending on the
partial orders. For example, since u3 in p;, is not ordered with
respect to the other core vertices, there are three valid vertex
sequences, which are reduced to two matching orders. We
call the ;th matching order pyy;.

Thus, to match pc it suffices to match its matching orders
pui- A match for pyy; results in 1 match for pe per valid vertex
sequence. For example, a match for ppyso, say {vi,v2,v3}, is
converted to two matches for ppc:

{v1 — W1 — Uy, V2 — Wy — U3, vy — w3 —>u2}
{vi =5 w1 = uz, vy > wy > up,v3s > ws = up}

3.2 Neighborhood Groups

We observe that sets of non-core vertices with identical neigh-
borhoods exhibit useful properties that further enable PERE-
GRINE to avoid redundant computation and reduce the match
enumeration depth. PEREGRINE collects such vertices into
neighborhood groups, which it leverages for several important
optimizations. For example, p, has one neighborhood group
{u1,u3}, while in pj, there are two neighborhood groups {u4 }
and {us}, as the non-core vertices are adjacent to different
core vertices.

3.2.1 Candidate Sets per Neighborhood Group

Since the vertices in a neighborhood group have the same core
neighbors, they also have the same candidate matches. In p,,

B 505

P P> V& Py Ds

Figure 4: Patterns used in evaluation.

the non-core vertices vertices u#; and u3 are both adjacent to uy
and uy4, and hence have the same candidate set. PEREGRINE
computes candidate sets per neighborhood group instead of
per non-core vertex to avoid performing duplicate operations
for each member of a neighborhood group.

3.2.2 Reducing Match Enumeration Depth

We make an important observation about the vertices within
a neighborhood group. Namely, the vertices in a neighbor-
hood group are symmetric to each other. We exploit these
symmetries to efficiently enumerate matches instead of the
traditional DFS enumeration process that iteratively maps the
candidates for each non-core vertex and backtracks.

In unlabeled patterns, the partial ordering of the pattern
restricted to a neighborhood group is a total ordering. For
example, the neighborhood group {u;,u3} is totally ordered
due to the condition u; < u3. In labeled patterns, each subset
of the neighborhood group vertices with the same labels will
be totally ordered. For ease of explanation, we use the term
match group to refer to a totally ordered subset of a neighbor-
hood group in labeled patterns, and an entire neighborhood
group in unlabeled patterns.

This allows us to break up enumeration into several mostly
independent stages. As the elements of a match group are
ordered and there are no orderings between match groups, we
can map the elements of an individual match group quickly
in tight loops with few branches. Importantly, vertices in sep-
arate neighborhood groups are not symmetric, so there are no
checks for partial orders across groups. The only dependence
outside a match group is to avoid re-mapping data vertices
that have already been matched in m. We proceed to map one
match group at a time in depth-first manner. By using match
groups, the depth of exploration is reduced from the number
of non-core vertices to the number of match groups.

3.2.3 Performance Results

We measure the performance benefits achieved by neighbor-
hood groups. We run pattern matching queries with patterns
p1 and p; from Figure 4, because in both patterns all the non-
core vertices are organized in a single neighborhood group.
Patterns without multiple vertices in a neighborhood group
remain unaffected. We run the queries on the Patents [17]
and YouTube [8] graphs. Patents is a sparse graph with 2.7M
vertices and 13M edges where each edge represents a citation

Patents YouTube
o 1.0
BE08
506
§§ 0.4
Z220.2
*0.0
P1 D2 P P2

NG I W/ONG

Figure 5: Execution times for pattern matching queries with
neighborhood groups (NG) and without neighborhood
groups (W/O NG). All times are normalized w.r.t. W/O NG.

between US patents. YouTube has 6.9M vertices and 44M
edges, where each vertex represents a video and edges link
related videos together. The experiments are performed on an
Intel Xeon Gold 3.10GHz processor, using 16 physical cores
with hyperthreading enabled and 32GB RAM.

Figure 5 shows the execution time for PEREGRINE with and
without neighborhood groups. We observe that PEREGRINE
achieves 11-25% better performance when using neighbor-
hood groups. As expected, with neighborhood groups enabled
PEREGRINE performs 1.5-3x fewer set intersections to match
the input patterns. This translates to huge savings: for instance,
PEREGRINE performs 152M fewer intersections when match-
ing p1 on YouTube when using neighborhood groups.

3.3 Match Groups & Fast Paths

With match groups enabled in PEREGRINE, we taxonomize
patterns into different classes based on the number of match
groups they contain. By doing so, fast paths can be developed
for different classes to skip certain depth-first exploration
steps. PEREGRINE currently incorporates two fast paths, one
for the common case of a single match group, and another for
the common case of two match groups. From our example
patterns, p, follows the former fast path, and p;, follows the
latter.

3.3.1 Single Match Group

When there is a single match group containing k vertices,
there is no need for any further depth-first exploration. It
remains only to enumerate all unique k-tuples from a single
vector. We can also skip checking whether vertices in m are
present in the candidate set for the match group, since all core
vertices must be adjacent to the members of the match group,
otherwise there would be more than one.

When the graph mining use case only requires the number
of pattern instances, the count can be computed in constant
time as (‘?') where A is the candidate set for the match group.

Patents YouTube
10 1 Match Group 1 Match Group
0.8
2)
= Y o
c 0.2 K
o <t
= 0.0
8 P2 & P2 p3
x
% 2 Match Groups 2 Match Groups
809
€06
2 04
“ 02

—
j)
—
=}

yzs y2s) yZ! D5
MG Il W/O MG

Figure 6: Execution time for pattern matching queries with
match group fast paths (MG) and without match group fast
paths (W/O MG). All times are normalized w.r.t. W/O MG.

3.3.2 Two Match Groups

When there are two match groups, enumeration requires a
Cartesian product of the sets of unique tuples representing
matches for vertices in each group, subtracting any overlap.
For example, consider p,. Each of its non-core vertices rep-
resents a separate match group. Suppose u4 and us5 have can-
didate sets A and B, respectively. Then the matches for the
non-core vertices are precisely the pairs:

AxB\{(v,v):veANB}

Even though this requires an additional set intersection and
an additional set difference to account for overlaps, directly
computing this set is much faster than a general depth-first
exploration.

To count the matches instead of enumerating, PEREGRINE
simply computes the cardinality of the set directly. For exam-
ple, the cardinality of the above set is simply |A| - |B| — |[ANB.

3.3.3 Three+ Match Groups

The approach for two match groups generalizes to larger num-
bers of match groups as well. However, the number of ad-
ditional set operations required to remove overlaps grows
combinatorially with the number of match groups. In a pat-
tern with k match groups, it requires Y% , (}) additional set
intersections and just as many set differences. This leads to di-
minishing returns after two match groups, and therefore when
there are three or more match groups PEREGRINE simply
traverses them in depth-first fashion as described previously.

Patents YouTube
1 Match Group 1 Match Group

!_\‘I

)

o
p3

P2 p3
2 Match Groups

Ps

Figure 7: Number of branches for pattern matching queries
with match group fast paths (MG) and without match group
fast paths (W/O MG). All numbers are
normalized w.r.t. W/O MG.

O

SO
S0

P2
2 Match Groups

Ps P4

MG Em W/O MG

Normalized Number of Branches

OO
SOOI D

—
ja=)

3.3.4 Performance Results

To measure the impact of the fast paths for the two pattern
types, we run pattern matching and 4-motif counting with
and without the fast paths enabled. For the pattern matching
queries we use two patterns p», p3 which have a single match
group, and two patterns p4, ps with two match groups. Fig-
ure 6 shows the execution times. For a single match group, the
fast path leads to a 1.5-236 x speedup for p, and p3, while the
fast path for two match groups leads to a 1.25 — 6x speedup
for p4 and ps. On YouTube, the two match group fast path
improves performance for p4 by 6x and ps5 by 1.37x despite
requiring 50M and 4B more set intersections for p4 and ps
respectively.

We also observe performance benefits for 4-motif counting,
where 4 out of 6 patterns benefit from fast paths. Overall,
4-motif counting speeds up by 1.6 —2.7x.

We profile the executions using perf to measure the re-
duction in branches due to the fast paths. Figure 7 shows the
results. On the YouTube graph, all of p», p3, p4, p5 incur on
average 175x fewer branches during matching with the fast
paths enabled, culminating in 34 x fewer branch misses on
average. Even though the 4-motif counting query contains
patterns which do not benefit from the optimizations, it still
performs 2 — 4.8 x fewer branches and 2.9B fewer mispredic-
tions.

3.4 Scalability

PEREGRINE performs explorations in vertex-parallel fashion.
Graph mining use cases are usually embarrassingly parallel,
and PEREGRINE utilizes dynamic load balancing techniques

Patents YouTube
T o7 < 21
(0] (0]
R @ 210
o 90 o
£ £ 29
= 55 =
c 2 c 28
o o
32! 3 o
2 3 2 6
w2 ()
1 2 4 81632 1 2 4 81632
Threads # Threads
NG+MG —— W/O NG+MG

Figure 8: Execution time (in seconds) for 4-motif counting
with the presented matching techniques (NG+MG) and
without them (W/O NG+MG), across different number of
threads.

to reduce workload imbalance (summarized in §4). Hence,
PEREGRINE scales linearly with the number of physical cores.

To understand how our advanced matching strategies im-
pact the scalability of PEREGRINE, we study scalability with
and without neighborhood groups and match group fast paths.
We run 4-motif counting on the Patents and YouTube graphs
with varying thread counts between 1 and 32. For each thread
count we run PEREGRINE with and without the neighborhood
groups and match group techniques, to measure how they
impact scalability. Figure 8 shows the results.

PEREGRINE scales well due to its highly parallel process-
ing model and load-balancing strategies. At 16 threads, exe-
cution is roughly 15x faster than with 1 thread. We observe
a gradual scaling from 16 to 32 threads mainly due to hyper-
threading kicking in after the physical core count is exceeded.
Graph mining involves irregular memory access patterns that
often miss the L3 cache, which is a suboptimal workload
for hyperthreading. While one hyperthread waits for main
memory access, the processor schedules another hyperthread,
which often must also wait for main memory access.

The neighborhood group and match group techniques pre-
dictably improve the performance while retaining high scal-
ability. We observe a 1.6x speedup over the unoptimized
execution on Patents and a 2.7 x speedup on YouTube at 32
threads. Even though some of the 4-motifs patterns do not ben-
efit significantly from these techniques, the ones that do are
relatively expensive to match and hence end up impacting the
overall performance. The speedups resulting from our tech-
niques are consistent at all thread counts: on Patents the op-
timizations lead to 1.6 — 1.75x speedups while on YouTube
they lead to 2.7 — 2.9 x speedups.

4 More Parallelism & Workload Management

There are several other techniques in PEREGRINE that enable
it to deliver high performance, especially across different use
cases. Below we summarize some of the key techniques.

Vectorized Candidate Set Computation. PEREGRINE
computes the candidate sets for pattern vertices using the
C++ STL set_intersection and set_difference func-
tions. When matching labeled patterns, the candidate sets are
also pruned of data vertices whose labels do not match. On
platforms with strong vectorization support, C++17 execution
policies can be used to easily vectorize these operations.

Dynamic Load Balancing. Graph mining algorithms often
suffer from workload imbalance due to dense regions of the
graph containing many more pattern matches than sparse ones.
PEREGRINE assigns workers to explore beginning from each
data vertex, and combats workload imbalance by reordering
the data vertices based on their degrees and pruning explo-
rations that move from high-degree vertices to low-degree
ones. This ensures that workers assigned to high-degree ver-
tices are not overburdened with edges to explore.

Early Termination for Existence Queries. Existence
queries do not require processing the entire data graph since
their results can be evaluated whenever their respective con-
ditions are satisfied. PEREGRINE terminates the exploration
process during matching when the user program observes
the necessary conditions. This is achieved by notifying the
worker threads to stop exploration. Threads monitor their noti-
fications periodically while matching, and when a notification
is observed, the thread-local values computed up to that point
are aggregated and returned to the user.

On-the-fly Aggregation. PEREGRINE performs on-the-fly
aggregation to provide global updates as mining progresses.
This is useful for early termination and for use cases like Fre-
quent Subgraph Mining where patterns that meet the support
threshold can be deemed frequent while matching continues
for other patterns. This is implemented using non-blocking
calls from matching threads to an asynchronous aggregator
thread which combines their local values.

5 Related Work

There has been a variety of research to develop efficient graph
mining solutions. To the best of our knowledge, PEREGRINE
is the first general-purpose graph mining system to leverage
pattern-awareness in its programming and processing models.

Arabesque [48], Fractal [12] and G-Miner [7] are dis-
tributed graph mining systems whereas RStream [52] and
AutoMine [33] enable graph mining on a single machine.

None of these systems are pattern-aware the way PEREGRINE
is: these systems perform unnecessary explorations and com-
putations, require large memory (or storage) capacity, and lack
the ability to easily express mining tasks at a high level. Lack
of pattern-awareness not only makes these systems slower, but
also limits their applicability to more complex graph mining
use cases.

ASAP [22] and ApproxG [34] enable approximate pat-
tern mining and graphlet counting. Works like GraMi [13],
ScaleMine [1], DistTC [20], QFrag [43], TurboISO [19],
PruneJuice [39], TurboFlux [26], PGX.D/Async [40] and oth-
ers [2,4,10,18,29,36,45-47,54] develop purpose-built solu-
tions for specific graph mining problems. OPT [25] is a fast
single-machine out-of-core triangle-counting system whose
techniques are generalized by DualSim [24] to match arbitrary
patterns.

Finally, several works enable processing static and dynamic
graphs [11,14,15,21,28,30-32,38,41,42,44,49-51,55]. These
systems typically compute values on vertices and edges rather
than analyzing substructures in graphs. They decompose com-
putation at vertex and edge level, which is not suitable for
graph mining use cases.

6 Conclusion

PEREGRINE is a pattern-aware graph mining system that effi-
ciently explores subgraph structures of interest and scales to
complex graph mining tasks on large graphs. We presented
an in-depth view of the pattern-analysis techniques powering
the matching engine of PEREGRINE which enable its state-of-
the-art performance. Our experiments show the importance of
pattern-awareness for scalable and performant graph mining.
The analysis for our advanced matching strategies takes only
a couple of microseconds to compute, yet they improve the
overall mining performance by up to two orders of magni-
tude. Details about other aspects of PEREGRINE including its
comprehensive evaluation can be found in [23].

References

[1] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis,
Zuhair Khayyat, and Fuad Jamour. ScaleMine: Scalable
Parallel Frequent Subgraph Mining in a Single Large
Graph. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis (SC '16), pages 61:1-61:12, 2016.

[2] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and
Nick Duffield. Efficient Graphlet Counting for Large
Networks. In IEEE International Conference on Data
Mining (ICDM ’15), pages 1-10, 2015.

[3] Peter S. Bearman, James Moody, and Katherine Stovel.
Chains of Affection: The Structure of Adolescent Ro-

[4]

(5]

(7]

(8]

[10]

(11]

(12]

mantic and Sexual Networks. American Journal of So-
ciology, 110(1):44-91, 2004.

Devora Berlowitz, Sara Cohen, and Benny Kimelfeld.
Efficient Enumeration of Maximal k-Plexes. In Proceed-
ings of the ACM International Conference on Manage-
ment of Data (SIGMOD ’15), pages 431-444, 2015.

Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie
Zhang. Efficient Subgraph Matching by Postponing
Cartesian Products. In Proceedings of the ACM Interna-
tional Conference on Management of Data (SIGMOD
’16), pages 1199-1214, 2016.

Bjorn Bringmann and Siegfried Nijssen. What Is Fre-
quent in a Single Graph? In Advances in Knowledge
Discovery and Data Mining: 12th Pacific-Asia Confer-
ence, volume 5012, pages 858—863, 2008.

Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan,
Da Yan, and James Cheng. G-Miner: An Efficient Task-
oriented Graph Mining System. In Proceedings of the
European Conference on Computer Systems (EuroSys
’18), pages 32:1-32:12, 2018.

Xu Cheng, C. Dale, and Jiangchuan Liu. Statistics and
Social Network of YouTube Videos. In Hans van den
Berg and Gunnar Karlsson, editors, Quality of Service,
2008. IWQoS 2008. 16th International Workshop on,
pages 229-238. IEEE, June 2008.

Wei-Ta Chu and Ming-Hung Tsai. Visual pattern dis-
covery for architecture image classification and product
image search. In Proceedings of the ACM International
Conference on Multimedia Retrieval (ICMR ’12), pages
1-8, 2012.

Maximilien Danisch, Oana Balalau, and Mauro Sozio.
Listing K-cliques in Sparse Real-World Graphs*. In
Proceedings of the World Wide Web Conference (WWW
’18), pages 589-598, 2018.

Laxman Dhulipala, Guy E Blelloch, and Julian Shun.
Low-Latency Graph Streaming Using Compressed
Purely-Functional Trees. In Proceedings of the ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI ’19), pages 918-934,
2019.

Vinicius Dias, Carlos H. C. Teixeira, Dorgival Guedes,
Wagner Meira, and Srinivasan Parthasarathy. Fractal:
A General-Purpose Graph Pattern Mining System. In
Proceedings of the ACM International Conference on
Management of Data (SIGMOD ’19), pages 1357-1374,
2019.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Mohammed Elseidy, Ehab Abdelhamid, Spiros Ski-
adopoulos, and Panos Kalnis. GraMi: Frequent Sub-
graph and Pattern Mining in a Single Large Graph. In
Proceedings of the VLDB Endowment (PVLDB ’14),
pages 517-528, 2014.

Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. PowerGraph: Distributed
Graph-parallel Computation on Natural Graphs. In Pro-
ceedings of the USENIX Conference on Operating Sys-
tems Design and Implementation (OSDI ’12), pages
17-30, 2012.

Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave,
Daniel Crankshaw, Michael J. Franklin, and Ion Stoica.
GraphX: Graph Processing in a Distributed Dataflow
Framework. In Proceedings of the USENIX Confer-
ence on Operating Systems Design and Implementation
(OSDI ’14), pages 599-613, 2014.

Joshua A. Grochow and Manolis Kellis. Network Motif
Discovery Using Subgraph Enumeration and Symmetry-
Breaking. In Research in Computational Molecular
Biology, pages 92—-106, 2007.

Bronwyn Hall, Adam Jaffe, and Manuel Trajtenberg.
The NBER Patent Citation Data File: Lessons, Insights
and Methodological Tools. NBER Working Paper 8498,
2001.

Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo
Park, and Wook-Shin Han. Efficient Subgraph Matching:
Harmonizing Dynamic Programming, Adaptive Match-
ing Order, and Failing Set Together. In Proceedings of
the ACM International Conference on Management of
Data (SIGMOD ’19), pages 1429-1446, 2019.

Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. Tur-
boISO: Towards Ultrafast and Robust Subgraph Isomor-
phism Search in Large Graph Databases. In Proceedings
of the ACM International Conference on Management
of Data (SIGMOD ’13), pages 337-348, 2013.

Loc Hoang, Vishwesh Jatala, Xuhao Chen, Udit Agar-
wal, Roshan Dathathri, Gurbinder Gill, and Keshav Pin-
gali. DistTC: High Performance Distributed Triangle
Counting. In IEEE High Performance Extreme Comput-
ing Conference (HPEC ’19), pages 1-7, 2019.

Sungpack Hong, Siegfried Depner, Thomas Manhardt,
Jan Van Der Lugt, Merijn Verstraaten, and Hassan Chafi.
PGX.D: a fast distributed graph processing engine. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis (SC ’15), pages 1-12, 2015.

(22]

(23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

Anand Padmanabha lyer, Zaoxing Liu, Xin Jin, Shiv-
aram Venkataraman, Vladimir Braverman, and Ion Sto-
ica. ASAP: Fast, Approximate Graph Pattern Mining
at Scale. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI
'18), pages 745-761, Carlsbad, CA, 2018.

Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora.
Peregrine: A Pattern-Aware Graph Mining System. In
Proceedings of the Fifteenth European Conference on
Computer Systems, pages 1-16, 2020.

Hyeonji Kim, Juneyoung Lee, Sourav S. Bhowmick,
Wook-Shin Han, JeongHoon Lee, Seongyun Ko, and
Moath H.A. Jarrah. DUALSIM: Parallel Subgraph Enu-
meration in a Massive Graph on a Single Machine. In
Proceedings of the ACM International Conference on
Management of Data (SIGMOD ’16), pages 1231-1245,
2016.

Jinha Kim, Wook-Shin Han, Sangyeon Lee, Kyungyeol
Park, and Hwanjo Yu. OPT: A New Framework for
Overlapped and Parallel Triangulation in Large-scale
Graphs. In Proceedings of the ACM International Con-
ference on Management of Data (SIGMOD ’14), pages
637-648, 2014.

Kyoungmin Kim, In Seo, Wook-Shin Han, Jeong-Hoon
Lee, Sungpack Hong, Hassan Chafi, Hyungyu Shin, and
Geonhwa Jeong. TurboFlux: A Fast Continuous Sub-
graph Matching System for Streaming Graph Data. In
Proceedings of the ACM International Conference on
Management of Data (SIGMOD ’18), pages 411-426,
2018.

Frederick S. Kuhl, Gordon M. Crippen, and Donald K.
Friesen. A combinatorial algorithm for calculating
ligand binding. Journal of Computational Chemistry,
5(1):24-34, 1984.

Pradeep Kumar and H Howie Huang. GraphOne: A Data
Store for Real-Time Analytics on Evolving Graphs. In
Proceedings of the USENIX Conference on File and
Storage Technologies (FAST °19), pages 249-263, 2019.

Longbin Lai, Lu Qin, Xuemin Lin, Ying Zhang, Lijun
Chang, and Shiyu Yang. Scalable Distributed Subgraph
Enumeration. In Proceedings of the VLDB Endowment
(PVLDB ’16), pages 217-228, 2016.

Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, Grzegorz
Czajkowski, and Google Inc. Pregel: A System for
Large-Scale Graph Processing. In Proceedings of the
ACM International Conference on Management of Data
(SIGMOD ’10), pages 135-146, 2010.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Mugilan Mariappan, Joanna Che, and Keval Vora. DZiG:
Sparsity-Aware Incremental Processing of Streaming
Graphs. In Proceedings of the European Conference on
Computer Systems (EuroSys 21), pages 83-98, 2021.

Mugilan Mariappan and Keval Vora. GraphBolt:
Dependency-Driven Synchronous Processing of Stream-
ing Graphs. In Proceedings of the European Conference
on Computer Systems (EuroSys '19), pages 25:1-25:16,
2019.

Daniel Mawhirter and Bo Wu. AutoMine: Harmonizing
High-level Abstraction and High Performance for Graph
Mining. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP ’19), pages 509—
523, 2019.

Daniel Mawhirter, Bo Wu, Dinesh Mehta, and Chao Ai.
ApproxG: Fast Approximate Parallel Graphlet Counting
Through Accuracy Control. In IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CC-
GRID ’18), pages 533-542, 2018.

Jean McGloin and David Kirk. An Overview of Social
Network Analysis. Journal of Criminal Justice Educa-
tion, 21:169-181, 2010.

Amine Mhedhbi and Semih Salihoglu. Optimizing Sub-
graph Queries by Combining Binary and Worst-Case
Optimal Joins. In Proceedings of the VLDB Endowment
(PVLDB ’19), page 1692-1704, 2019.

Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, N Kashtan,
Dmitri Chklovskii, and Uri Alon. Network Motifs: Sim-
ple Building Blocks of Complex Networks. Science,
298:824-7, 2002.

Donald Nguyen, Andrew Lenharth, and Keshav Pingali.
A Lightweight Infrastructure for Graph Analytics. In
Proceedings of the ACM Symposium on Operating Sys-
tems Principles (SOSP ’13), pages 456471, 2013.

Tahsin Reza, Matei Ripeanu, Nicolas Tripoul, Geof-
frey Sanders, and Roger Pearce. PruneJuice: Pruning
Trillion-edge Graphs to a Precise Pattern-matching So-
lution. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage,
and Analysis (SC ’18), pages 21:1-21:17, 2018.

Nicholas P. Roth, Vasileios Trigonakis, Sungpack Hong,
Hassan Chafi, Anthony Potter, Boris Motik, and Ian Hor-
rocks. PGX.D/Async: A Scalable Distributed Graph
Pattern Matching Engine. In Proceedings of the Inter-
national Workshop on Graph Data-Management Expe-
riences & Systems (GRADES ’17),2017.

Amitabha Roy, Laurent Bindschaedler, Jasmina Malice-
vic, and Willy Zwaenepoel. Chaos: Scale-out Graph

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

(50]

Processing from Secondary Storage. In Proceedings of
the ACM Symposium on Operating Systems Principles
(SOSP ’15), pages 410-424, 2015.

Semih Salihoglu and Jennifer Widom. GPS: A Graph
Processing System. In Proceedings of the International
Conference on Scientific and Statistical Database Man-
agement (SSDBM ’13), 2013.

Marco Serafini, Gianmarco De Francisci Morales, and
Georgos Siganos. QFrag: Distributed Graph Search via
Subgraph Isomorphism. In Proceedings of the Sympo-
sium on Cloud Computing (SoCC ’17), pages 214-228,
2017.

Julian Shun and Guy E. Blelloch. Ligra: A Lightweight
Graph Processing Framework for Shared Memory. In
Proceedings of the ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP
’13), pages 135-146, 2013.

Julian Shun and Kanat Tangwongsan. Multicore triangle
computations without tuning. In IEEE International
Conference on Data Engineering (ICDE ’15), pages
149-160, 2015.

Qi Song, Mohammad Hossein Namaki, and Yinghui
Wu. Answering Why-Questions for Subgraph Queries
in Multi-attributed Graphs. In IEEE International Con-
ference on Data Engineering (ICDE ’19), pages 40-51,
2019.

Nilothpal Talukder and Mohammed J. Zaki. A Dis-
tributed Approach for Graph Mining in Massive Net-
works. Data Mining and Knowledge Discovery,
30(5):1024-1052, 2016.

Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Ser-
afini, Georgos Siganos, Mohammed J. Zaki, and Ashraf
Aboulnaga. Arabesque: A System for Distributed Graph
Mining. In Proceedings of the ACM Symposium on Op-
erating Systems Principles (SOSP ’15), pages 425-440,
2015.

Keval Vora, Rajiv Gupta, and Guoqging Xu. KickStarter:
Fast and Accurate Computations on Streaming Graphs
via Trimmed Approximations. In Proceedings of the
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS ’17), pages 237-251, 2017.

Keval Vora, Sai Charan Koduru, and Rajiv Gupta. AS-
PIRE: Exploiting Asynchronous Parallelism in Iterative
Algorithms Using a Relaxed Consistency Based DSM.
In Proceedings of SIGPLAN International Conference
on Object Oriented Programming Systems Languages
and Applications (OOPSLA ’14), page 861-878, 2014.

[51]

[52]

[53]

Keval Vora, Chen Tian, Rajiv Gupta, and Ziang Hu.
CoRAL: Confined Recovery in Distributed Asyn-
chronous Graph Processing. In Proceedings of the Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS
’17), page 223-236, 2017.

Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang
Nguyen, and Guoqing Harry Xu. RStream: Marrying
Relational Algebra with Streaming for Efficient Graph
Mining on a Single Machine. In Proceedings of the
USENIX Conference on Operating Systems Design and
Implementation (OSDI ’18), pages 763782, 2018.

Liang Wu and Huan Liu. Tracing Fake-News Footprints:
Characterizing Social Media Messages by How They

10

[54]

[55]

Propagate. In Proceedings of the ACM International
Conference on Web Search and Data Mining (WSDM
’18), pages 637-645, 2018.

Gensheng Zhang, Damian Jimenez, and Chengkai Li.
Maverick: Discovering Exceptional Facts from Knowl-
edge Graphs. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD ’18),
pages 1317-1332, 2018.

Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and
Xiaosong Ma. Gemini: A Computation-Centric Dis-
tributed Graph Processing System. In Proceedings of
the USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’16), pages 301-316, 2016.

