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Abstract
Graph mining workloads aim to extract structural properties

of a graph by exploring its subgraph structures. PEREGRINE

is a general-purpose graph mining system that provides a

generic runtime to efficiently explore subgraph structures of

interest and perform various graph mining analyses. It takes

a ‘pattern-aware’ approach by incorporating a pattern-based

programming model along with efficient pattern matching

strategies. The programming model enables easier expression

of complex graph mining use cases and enables PEREGRINE

to extract the semantics of patterns. By analyzing the patterns,

PEREGRINE generates efficient exploration plans which it

uses to guide its subgraph exploration.

In this paper, we present an in-depth view of the pattern-

analysis techniques powering the matching engine of PERE-

GRINE. Beyond the theoretical foundations from prior re-

search, we expose opportunities based on how the explo-

ration plans are evaluated, and develop key techniques for

computation reuse, enumeration depth reduction, and branch

elimination. Our experiments show the importance of pattern-

awareness for scalable and performant graph mining where

the presented new techniques speed up the performance by

up to two orders of magnitude on top of the benefits achieved

from the prior theoretical foundations that generate the initial

exploration plans.

1 Introduction

Graph mining based analytics has become popular across

various important domains including bioinformatics, com-

puter vision, and social network analysis [3, 9, 27, 35, 37, 53].

These tasks mainly involve computing structural properties

of the graph, i.e., exploring and understanding the substruc-

tures within the graph. Finding specific subgraphs (also called

patterns) of a graph is the subgraph isomorphism problem,

which is NP-complete. Since the search space is exponential,

graph mining problems are computationally intensive and

their solutions are often difficult to program in a parallel or

distributed setting.

PEREGRINE
1 is a recent graph mining system that takes a

‘pattern-aware’ approach to efficiently perform mining tasks

on large graphs [23]. PEREGRINE incorporates a pattern-

based programming model that enables easier expression of

complex graph mining use cases, and reveals patterns of inter-

est to the underlying system. Using the pattern information,

PEREGRINE efficiently mines relevant subgraphs by perform-

ing two key steps. First, it analyzes the patterns to be mined

in order to understand their substructures and to generate

an exploration plan describing how to efficiently find those

patterns. And then, it explores the data graph using the ex-

ploration plan to guide its search and presents the subgraphs

back to the user space. By doing so, PEREGRINE directly

mines the subgraphs of interest while avoiding exploration of

unnecessary subgraphs, and simultaneously bypassing expen-

sive computations (e.g., isomorphism and uniqueness checks)

throughout the mining process.

PEREGRINE’s pattern-based programming model treats

graph patterns as first class constructs: it provides basic mech-

anisms to load, generate and modify patterns along with inter-

faces to query patterns in the data graph. Furthermore, PERE-

GRINE introduces two novel abstractions, an ANTI-EDGE

and an ANTI-VERTEX, that express advanced structural con-

straints on patterns to be matched. This allows users to directly

operate on patterns and express their analysis as ‘pattern pro-

grams’ on PEREGRINE (Figure 1 shows Frequent Subgraph

Mining [6] implemented as a pattern program). Moreover,

it enables PEREGRINE to extract the semantics of patterns

which it uses to generate efficient exploration plans for its

pattern-aware processing model.

PEREGRINE’s efficient subgraph exploration runtime stems

from two sources: first, theoretical foundations from existing

subgraph matching research [5, 16] that generate exploration

plans; and second, advanced matching strategies aimed at ex-

ploiting pattern structures for practical system-level benefits,

chiefly by architecting the hot paths in the matching process

to avoid performance pitfalls and maximize efficiency.

1PEREGRINE source code: https://github.com/pdclab/peregrine

1



Void updateSupport(Match m) {

mapPattern(m.domain());

}

Bool isFrequent(Pattern p, Domain d) {

return (d.support() >= threshold);

}

DataGraph G = loadDataGraph("labeledInput.graph");

Set<Pattern> patterns = generateAllEdgeInduced(2);

while (patterns not empty) {

Map<Pattern, Domain> results = match(G, patterns , updateSupport);

Set<Pattern> frequentPatterns = results.filter(isFrequent).keys();

patterns = extendByEdge(frequentPatterns);

}

Figure 1: Frequent Subgraph Mining implementation using PEREGRINE’s pattern-based programming model.

In this paper, we focus on the pattern-aware subgraph ex-

ploration runtime of PEREGRINE. Specifically, we discuss

key techniques including candidate set sharing, enumeration

depth reduction, and branch elimination. Our advanced match-

ing strategies include novel concepts of neighborhood groups

and match groups. Neighborhood groups enable computation

reuse by identifying pattern vertices which can share sets of

candidate matching data vertices. Match groups further im-

prove performance by exploiting the symmetries of pattern

vertices to avoid branches in inner loops of the matching code

and reducing the exploration depth. We taxonomize patterns

into different classes based on the number of match groups

they contain, and develop fast paths in PEREGRINE that com-

pletely eliminate branches in the final stages of matching for

different pattern types.

Since PEREGRINE directly finds the subgraphs of interest,

it does not incur additional processing over those subgraphs

throughout its exploration process. Moreover, PEREGRINE

does not maintain intermediate partial subgraphs in memory,

resulting in a limited memory footprint throughout the mining

process. PEREGRINE runs on a single machine and is highly

concurrent. Evaluation conducted in [23] across several graph

mining use cases on real-world graphs shows that PEREGRINE

running on a single 16-core machine outperforms distributed

graph mining systems [7, 12, 48] running on a cluster with

eight 16-core machines. Furthermore, PEREGRINE could eas-

ily scale to large graphs and complex mining tasks which

could not be handled by other systems.

To understand the benefits of our matching strategies that

utilize neighborhood groups and match groups, we evaluate

them across different pattern matching and motif counting

tasks. Our results show that these techniques are crucial in re-

taining high performance as they speed up the exploration by

up to two orders of magnitude on top of the benefits achieved

from the prior theoretical foundations that generate the initial

exploration plans.

2 Graph Mining Fundamentals

Graph mining involves exploring connected subgraphs of in-

terest in a large data graph. Graph mining queries are diverse,

ranging from simple pattern matching and motif counting

queries where the structure of the subgraphs to explore is

fixed and known ahead of time, to more complex use cases

like frequent subgraph mining where exploration is guided

by previous results. We represent subgraphs of interest with

graph templates called patterns.

We define a match m of a pattern p as a subgraph of the

data graph that is isomorphic to p, where isomorphism is a

one-to-one mapping between the vertices of p and m such

that if two vertices are adjacent in p, then their corresponding

vertices are adjacent in m.

Since there can be sub-structural symmetries within p (e.g.,

a triangle structure looks the same when it is rotated), the same

subgraph of the data graph can be represented by multiple

different mappings from p into G. For both efficiency and

ease-of-use, graph mining systems usually explore each match

only once.

In PEREGRINE, users express graph mining tasks directly in

terms of patterns. For example, k-Motif Counting is a matter

of matching all patterns with k vertices. Frequent Subgraph

Mining, on the other hand, lists all patterns that are frequent

in the data graph, and it requires iteratively matching and

extending patterns by an edge while filtering patterns that do

not meet a frequency threshold (see Figure 1). PEREGRINE’s

pattern-aware runtime extracts the patterns involved in the

graph mining use cases, finds all of their unique matches in

the data graph, and processes the matches according to the

user’s instructions.

3 Directly Matching A Given Pattern

As patterns of interest are expressed by the graph mining pro-

gram, the runtime traverses the data graph vertices in parallel,
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ExplorationPlan generatePlan(Pattern p) {

partialOrders = breakSymmetries(p);

vc = minConnectedVertexCover(p);

pC = vertexInducedSubgraph(vc, p);

matchingOrders = computeMatchingOrders(pC,

partialOrders);

matchGroups = computeMatchGroups(p, pC);

return (pC, partialOrders , matchingOrders ,

matchGroups);

}

Figure 2: Computing exploration plan.

finding all matches for the input patterns originating from

each vertex. Since patterns are much smaller than the data

graph, PEREGRINE analyzes the input patterns to develop an

exploration plan. In addition to well-established techniques

from the literature [5, 16, 24], PEREGRINE performs novel

pattern analysis to optimize the exploration plan.

Figure 2 shows how the exploration plan is computed from

a given pattern p, and Figure 3 shows the exploration plans for

example patterns pa and pb. First, to avoid duplicate matches

we break the symmetries of p by enforcing a partial ordering

on matched vertices [16]. For pa we obtain the partial ordering

u1 < u3 and u2 < u4, and for pb we obtain u1 < u2.

In the next step, we compute the core of p (called pC)

as the subgraph induced by its minimum connected vertex

cover 2. In our example, pC for pa is the subgraph induced by

u2 and u4. Given a match m for pC, all matches of p which

contain m can be computed from the adjacency lists of vertices

in m via set operations. The candidate set for u1 in pa is

adj(m(u2))∩ adj(m(u4)), for instance.

PEREGRINE performs further analysis to optimize the

matching process for both core and non-core vertices beyond

a naïve depth-first traversal of the pattern vertices. It is im-

portant to note that this analysis is performed on the pattern

graph only, i.e., all the computations are applied on p (and its

derivatives). Hence, exploration plans are computed quickly

(often in less than half a millisecond).

3.1 Matching Orders

To simplify the problem of matching pC, we generate match-

ing orders to direct our exploration in the data graph. A match-

ing order is a graph representing an ordered view of pC. The

vertices of the matching order are totally-ordered such that

the partial ordering of p restricted to pC is maintained. This

allows matching pC by traversing vertices with increasing

vertex ids without canonicality checks.

We compute matching orders by enumerating all sequences

of vertices in pC that meet the partial ordering, and for each

2A connected vertex cover is a subset of connected vertices that covers

all edges.
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Figure 3: Examples of pattern graphs and their analysis.

Neighborhood groups and match groups are equal in

unlabeled patterns.

sequence we create a copy of pC where the id of each vertex

is remapped to its position in the sequence. Then, we discard

duplicate matching orders. For our example pattern pa, its

core substructure has only one valid vertex sequence, {u2,u4},

so we obtain only one matching order. Note that there can

be multiple matching orders for a given pC depending on the

partial orders. For example, since u3 in pb is not ordered with

respect to the other core vertices, there are three valid vertex

sequences, which are reduced to two matching orders. We

call the ith matching order pMi.

Thus, to match pC it suffices to match its matching orders

pMi. A match for pMi results in 1 match for pC per valid vertex

sequence. For example, a match for pbM2, say {v1,v2,v3}, is

converted to two matches for pbC:

{v1 → w1 → u1,v2 → w2 → u3,v3 → w3 → u2}

{v1 → w1 → u3,v2 → w2 → u1,v3 → w3 → u2}

3.2 Neighborhood Groups

We observe that sets of non-core vertices with identical neigh-

borhoods exhibit useful properties that further enable PERE-

GRINE to avoid redundant computation and reduce the match

enumeration depth. PEREGRINE collects such vertices into

neighborhood groups, which it leverages for several important

optimizations. For example, pa has one neighborhood group

{u1,u3}, while in pb there are two neighborhood groups {u4}
and {u5}, as the non-core vertices are adjacent to different

core vertices.

3.2.1 Candidate Sets per Neighborhood Group

Since the vertices in a neighborhood group have the same core

neighbors, they also have the same candidate matches. In pa,
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None of these systems are pattern-aware the way PEREGRINE

is: these systems perform unnecessary explorations and com-

putations, require large memory (or storage) capacity, and lack

the ability to easily express mining tasks at a high level. Lack

of pattern-awareness not only makes these systems slower, but

also limits their applicability to more complex graph mining

use cases.

ASAP [22] and ApproxG [34] enable approximate pat-

tern mining and graphlet counting. Works like GraMi [13],

ScaleMine [1], DistTC [20], QFrag [43], TurboISO [19],

PruneJuice [39], TurboFlux [26], PGX.D/Async [40] and oth-

ers [2, 4, 10, 18, 29, 36, 45–47, 54] develop purpose-built solu-

tions for specific graph mining problems. OPT [25] is a fast

single-machine out-of-core triangle-counting system whose

techniques are generalized by DualSim [24] to match arbitrary

patterns.

Finally, several works enable processing static and dynamic

graphs [11,14,15,21,28,30–32,38,41,42,44,49–51,55]. These

systems typically compute values on vertices and edges rather

than analyzing substructures in graphs. They decompose com-

putation at vertex and edge level, which is not suitable for

graph mining use cases.

6 Conclusion

PEREGRINE is a pattern-aware graph mining system that effi-

ciently explores subgraph structures of interest and scales to

complex graph mining tasks on large graphs. We presented

an in-depth view of the pattern-analysis techniques powering

the matching engine of PEREGRINE which enable its state-of-

the-art performance. Our experiments show the importance of

pattern-awareness for scalable and performant graph mining.

The analysis for our advanced matching strategies takes only

a couple of microseconds to compute, yet they improve the

overall mining performance by up to two orders of magni-

tude. Details about other aspects of PEREGRINE including its

comprehensive evaluation can be found in [23].
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