
A Deeper Dive into Pattern-Aware Subgraph Exploration with PEREGRINE

Kasra Jamshidi

School of Computing Science

Simon Fraser University

British Columbia, Canada

kjamshid@cs.sfu.ca

Keval Vora

School of Computing Science

Simon Fraser University

British Columbia, Canada

keval@cs.sfu.ca

Abstract
Graph mining workloads aim to extract structural properties

of a graph by exploring its subgraph structures. PEREGRINE

is a general-purpose graph mining system that provides a

generic runtime to efficiently explore subgraph structures of

interest and perform various graph mining analyses. It takes

a ‘pattern-aware’ approach by incorporating a pattern-based

programming model along with efficient pattern matching

strategies. The programming model enables easier expression

of complex graph mining use cases and enables PEREGRINE

to extract the semantics of patterns. By analyzing the patterns,

PEREGRINE generates efficient exploration plans which it

uses to guide its subgraph exploration.

In this paper, we present an in-depth view of the pattern-

analysis techniques powering the matching engine of PERE-

GRINE. Beyond the theoretical foundations from prior re-

search, we expose opportunities based on how the explo-

ration plans are evaluated, and develop key techniques for

computation reuse, enumeration depth reduction, and branch

elimination. Our experiments show the importance of pattern-

awareness for scalable and performant graph mining where

the presented new techniques speed up the performance by

up to two orders of magnitude on top of the benefits achieved

from the prior theoretical foundations that generate the initial

exploration plans.

1 Introduction

Graph mining based analytics has become popular across

various important domains including bioinformatics, com-

puter vision, and social network analysis [3, 9, 27, 35, 37, 53].

These tasks mainly involve computing structural properties

of the graph, i.e., exploring and understanding the substruc-

tures within the graph. Finding specific subgraphs (also called

patterns) of a graph is the subgraph isomorphism problem,

which is NP-complete. Since the search space is exponential,

graph mining problems are computationally intensive and

their solutions are often difficult to program in a parallel or

distributed setting.

PEREGRINE
1 is a recent graph mining system that takes a

‘pattern-aware’ approach to efficiently perform mining tasks

on large graphs [23]. PEREGRINE incorporates a pattern-

based programming model that enables easier expression of

complex graph mining use cases, and reveals patterns of inter-

est to the underlying system. Using the pattern information,

PEREGRINE efficiently mines relevant subgraphs by perform-

ing two key steps. First, it analyzes the patterns to be mined

in order to understand their substructures and to generate

an exploration plan describing how to efficiently find those

patterns. And then, it explores the data graph using the ex-

ploration plan to guide its search and presents the subgraphs

back to the user space. By doing so, PEREGRINE directly

mines the subgraphs of interest while avoiding exploration of

unnecessary subgraphs, and simultaneously bypassing expen-

sive computations (e.g., isomorphism and uniqueness checks)

throughout the mining process.

PEREGRINE’s pattern-based programming model treats

graph patterns as first class constructs: it provides basic mech-

anisms to load, generate and modify patterns along with inter-

faces to query patterns in the data graph. Furthermore, PERE-

GRINE introduces two novel abstractions, an ANTI-EDGE

and an ANTI-VERTEX, that express advanced structural con-

straints on patterns to be matched. This allows users to directly

operate on patterns and express their analysis as ‘pattern pro-

grams’ on PEREGRINE (Figure 1 shows Frequent Subgraph

Mining [6] implemented as a pattern program). Moreover,

it enables PEREGRINE to extract the semantics of patterns

which it uses to generate efficient exploration plans for its

pattern-aware processing model.

PEREGRINE’s efficient subgraph exploration runtime stems

from two sources: first, theoretical foundations from existing

subgraph matching research [5, 16] that generate exploration

plans; and second, advanced matching strategies aimed at ex-

ploiting pattern structures for practical system-level benefits,

chiefly by architecting the hot paths in the matching process

to avoid performance pitfalls and maximize efficiency.

1PEREGRINE source code: https://github.com/pdclab/peregrine

1



Void updateSupport(Match m) {

mapPattern(m.domain());

}

Bool isFrequent(Pattern p, Domain d) {

return (d.support() >= threshold);

}

DataGraph G = loadDataGraph("labeledInput.graph");

Set<Pattern> patterns = generateAllEdgeInduced(2);

while (patterns not empty) {

Map<Pattern, Domain> results = match(G, patterns , updateSupport);

Set<Pattern> frequentPatterns = results.filter(isFrequent).keys();

patterns = extendByEdge(frequentPatterns);

}

Figure 1: Frequent Subgraph Mining implementation using PEREGRINE’s pattern-based programming model.

In this paper, we focus on the pattern-aware subgraph ex-

ploration runtime of PEREGRINE. Specifically, we discuss

key techniques including candidate set sharing, enumeration

depth reduction, and branch elimination. Our advanced match-

ing strategies include novel concepts of neighborhood groups

and match groups. Neighborhood groups enable computation

reuse by identifying pattern vertices which can share sets of

candidate matching data vertices. Match groups further im-

prove performance by exploiting the symmetries of pattern

vertices to avoid branches in inner loops of the matching code

and reducing the exploration depth. We taxonomize patterns

into different classes based on the number of match groups

they contain, and develop fast paths in PEREGRINE that com-

pletely eliminate branches in the final stages of matching for

different pattern types.

Since PEREGRINE directly finds the subgraphs of interest,

it does not incur additional processing over those subgraphs

throughout its exploration process. Moreover, PEREGRINE

does not maintain intermediate partial subgraphs in memory,

resulting in a limited memory footprint throughout the mining

process. PEREGRINE runs on a single machine and is highly

concurrent. Evaluation conducted in [23] across several graph

mining use cases on real-world graphs shows that PEREGRINE

running on a single 16-core machine outperforms distributed

graph mining systems [7, 12, 48] running on a cluster with

eight 16-core machines. Furthermore, PEREGRINE could eas-

ily scale to large graphs and complex mining tasks which

could not be handled by other systems.

To understand the benefits of our matching strategies that

utilize neighborhood groups and match groups, we evaluate

them across different pattern matching and motif counting

tasks. Our results show that these techniques are crucial in re-

taining high performance as they speed up the exploration by

up to two orders of magnitude on top of the benefits achieved

from the prior theoretical foundations that generate the initial

exploration plans.

2 Graph Mining Fundamentals

Graph mining involves exploring connected subgraphs of in-

terest in a large data graph. Graph mining queries are diverse,

ranging from simple pattern matching and motif counting

queries where the structure of the subgraphs to explore is

fixed and known ahead of time, to more complex use cases

like frequent subgraph mining where exploration is guided

by previous results. We represent subgraphs of interest with

graph templates called patterns.

We define a match m of a pattern p as a subgraph of the

data graph that is isomorphic to p, where isomorphism is a

one-to-one mapping between the vertices of p and m such

that if two vertices are adjacent in p, then their corresponding

vertices are adjacent in m.

Since there can be sub-structural symmetries within p (e.g.,

a triangle structure looks the same when it is rotated), the same

subgraph of the data graph can be represented by multiple

different mappings from p into G. For both efficiency and

ease-of-use, graph mining systems usually explore each match

only once.

In PEREGRINE, users express graph mining tasks directly in

terms of patterns. For example, k-Motif Counting is a matter

of matching all patterns with k vertices. Frequent Subgraph

Mining, on the other hand, lists all patterns that are frequent

in the data graph, and it requires iteratively matching and

extending patterns by an edge while filtering patterns that do

not meet a frequency threshold (see Figure 1). PEREGRINE’s

pattern-aware runtime extracts the patterns involved in the

graph mining use cases, finds all of their unique matches in

the data graph, and processes the matches according to the

user’s instructions.

3 Directly Matching A Given Pattern

As patterns of interest are expressed by the graph mining pro-

gram, the runtime traverses the data graph vertices in parallel,

2



ExplorationPlan generatePlan(Pattern p) {

partialOrders = breakSymmetries(p);

vc = minConnectedVertexCover(p);

pC = vertexInducedSubgraph(vc, p);

matchingOrders = computeMatchingOrders(pC,

partialOrders);

matchGroups = computeMatchGroups(p, pC);

return (pC, partialOrders , matchingOrders ,

matchGroups);

}

Figure 2: Computing exploration plan.

finding all matches for the input patterns originating from

each vertex. Since patterns are much smaller than the data

graph, PEREGRINE analyzes the input patterns to develop an

exploration plan. In addition to well-established techniques

from the literature [5, 16, 24], PEREGRINE performs novel

pattern analysis to optimize the exploration plan.

Figure 2 shows how the exploration plan is computed from

a given pattern p, and Figure 3 shows the exploration plans for

example patterns pa and pb. First, to avoid duplicate matches

we break the symmetries of p by enforcing a partial ordering

on matched vertices [16]. For pa we obtain the partial ordering

u1 < u3 and u2 < u4, and for pb we obtain u1 < u2.

In the next step, we compute the core of p (called pC)

as the subgraph induced by its minimum connected vertex

cover 2. In our example, pC for pa is the subgraph induced by

u2 and u4. Given a match m for pC, all matches of p which

contain m can be computed from the adjacency lists of vertices

in m via set operations. The candidate set for u1 in pa is

adj(m(u2))∩ adj(m(u4)), for instance.

PEREGRINE performs further analysis to optimize the

matching process for both core and non-core vertices beyond

a naïve depth-first traversal of the pattern vertices. It is im-

portant to note that this analysis is performed on the pattern

graph only, i.e., all the computations are applied on p (and its

derivatives). Hence, exploration plans are computed quickly

(often in less than half a millisecond).

3.1 Matching Orders

To simplify the problem of matching pC, we generate match-

ing orders to direct our exploration in the data graph. A match-

ing order is a graph representing an ordered view of pC. The

vertices of the matching order are totally-ordered such that

the partial ordering of p restricted to pC is maintained. This

allows matching pC by traversing vertices with increasing

vertex ids without canonicality checks.

We compute matching orders by enumerating all sequences

of vertices in pC that meet the partial ordering, and for each

2A connected vertex cover is a subset of connected vertices that covers

all edges.

�✁

✂✄

✂☎

✂✆

✂✝

✂✞

✟✠ ✟✡ ✟☛

☞✞ ☞✆ ☞☎

☞✞ ☞✆ ☞☎

✟✠ ✟☛ ✟✡

✟☛ ✟✠ ✟✡

✌✍✎✏✑✒✓✔ ✕✖✗✘✖✙

✚✘✖✎✘✛ ✜✢✣✘✖

✤✟✠ ✥ ✟✡ ✥ ✟☛✦

✟✠ ✧ ✟✡

★✍✖✎✒✍✩ ✕✖✗✘✖✙

✌✍✎✏✑ ✪✖✢✟✫✙

✤✟✬✦✥ ✤✟✭✦

✮✯

✂☎

✰✆

✂✝

✰✞

✤✟✡ ✥ ✟✬✦

✚✘✖✎✘✛ ✜✢✣✘✖

✱✠ ✲ ✱☛

✟✡ ✧ ✟✬

✳✴✵✶✷✴✸ ✹✵✺✻✵✼

✟✡ ✟✬

✽✞ ✽✆

✾✴✶✿❀✷❁❂ ✹✵✺✻✵✼

✤✟✠ ✥ ✟☛✦

✌✍✎✏✑ ✪✖✢✟✫✙

Figure 3: Examples of pattern graphs and their analysis.

Neighborhood groups and match groups are equal in

unlabeled patterns.

sequence we create a copy of pC where the id of each vertex

is remapped to its position in the sequence. Then, we discard

duplicate matching orders. For our example pattern pa, its

core substructure has only one valid vertex sequence, {u2,u4},

so we obtain only one matching order. Note that there can

be multiple matching orders for a given pC depending on the

partial orders. For example, since u3 in pb is not ordered with

respect to the other core vertices, there are three valid vertex

sequences, which are reduced to two matching orders. We

call the ith matching order pMi.

Thus, to match pC it suffices to match its matching orders

pMi. A match for pMi results in 1 match for pC per valid vertex

sequence. For example, a match for pbM2, say {v1,v2,v3}, is

converted to two matches for pbC:

{v1 → w1 → u1,v2 → w2 → u3,v3 → w3 → u2}

{v1 → w1 → u3,v2 → w2 → u1,v3 → w3 → u2}

3.2 Neighborhood Groups

We observe that sets of non-core vertices with identical neigh-

borhoods exhibit useful properties that further enable PERE-

GRINE to avoid redundant computation and reduce the match

enumeration depth. PEREGRINE collects such vertices into

neighborhood groups, which it leverages for several important

optimizations. For example, pa has one neighborhood group

{u1,u3}, while in pb there are two neighborhood groups {u4}
and {u5}, as the non-core vertices are adjacent to different

core vertices.

3.2.1 Candidate Sets per Neighborhood Group

Since the vertices in a neighborhood group have the same core

neighbors, they also have the same candidate matches. In pa,

3









None of these systems are pattern-aware the way PEREGRINE

is: these systems perform unnecessary explorations and com-

putations, require large memory (or storage) capacity, and lack

the ability to easily express mining tasks at a high level. Lack

of pattern-awareness not only makes these systems slower, but

also limits their applicability to more complex graph mining

use cases.

ASAP [22] and ApproxG [34] enable approximate pat-

tern mining and graphlet counting. Works like GraMi [13],

ScaleMine [1], DistTC [20], QFrag [43], TurboISO [19],

PruneJuice [39], TurboFlux [26], PGX.D/Async [40] and oth-

ers [2, 4, 10, 18, 29, 36, 45–47, 54] develop purpose-built solu-

tions for specific graph mining problems. OPT [25] is a fast

single-machine out-of-core triangle-counting system whose

techniques are generalized by DualSim [24] to match arbitrary

patterns.

Finally, several works enable processing static and dynamic

graphs [11,14,15,21,28,30–32,38,41,42,44,49–51,55]. These

systems typically compute values on vertices and edges rather

than analyzing substructures in graphs. They decompose com-

putation at vertex and edge level, which is not suitable for

graph mining use cases.

6 Conclusion

PEREGRINE is a pattern-aware graph mining system that effi-

ciently explores subgraph structures of interest and scales to

complex graph mining tasks on large graphs. We presented

an in-depth view of the pattern-analysis techniques powering

the matching engine of PEREGRINE which enable its state-of-

the-art performance. Our experiments show the importance of

pattern-awareness for scalable and performant graph mining.

The analysis for our advanced matching strategies takes only

a couple of microseconds to compute, yet they improve the

overall mining performance by up to two orders of magni-

tude. Details about other aspects of PEREGRINE including its

comprehensive evaluation can be found in [23].

References

[1] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis,

Zuhair Khayyat, and Fuad Jamour. ScaleMine: Scalable

Parallel Frequent Subgraph Mining in a Single Large

Graph. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage

and Analysis (SC ’16), pages 61:1–61:12, 2016.

[2] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and

Nick Duffield. Efficient Graphlet Counting for Large

Networks. In IEEE International Conference on Data

Mining (ICDM ’15), pages 1–10, 2015.

[3] Peter S. Bearman, James Moody, and Katherine Stovel.

Chains of Affection: The Structure of Adolescent Ro-

mantic and Sexual Networks. American Journal of So-

ciology, 110(1):44–91, 2004.

[4] Devora Berlowitz, Sara Cohen, and Benny Kimelfeld.

Efficient Enumeration of Maximal k-Plexes. In Proceed-

ings of the ACM International Conference on Manage-

ment of Data (SIGMOD ’15), pages 431–444, 2015.

[5] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie

Zhang. Efficient Subgraph Matching by Postponing

Cartesian Products. In Proceedings of the ACM Interna-

tional Conference on Management of Data (SIGMOD

’16), pages 1199–1214, 2016.

[6] Bjorn Bringmann and Siegfried Nijssen. What Is Fre-

quent in a Single Graph? In Advances in Knowledge

Discovery and Data Mining: 12th Pacific-Asia Confer-

ence, volume 5012, pages 858–863, 2008.

[7] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan,

Da Yan, and James Cheng. G-Miner: An Efficient Task-

oriented Graph Mining System. In Proceedings of the

European Conference on Computer Systems (EuroSys

’18), pages 32:1–32:12, 2018.

[8] Xu Cheng, C. Dale, and Jiangchuan Liu. Statistics and

Social Network of YouTube Videos. In Hans van den

Berg and Gunnar Karlsson, editors, Quality of Service,

2008. IWQoS 2008. 16th International Workshop on,

pages 229–238. IEEE, June 2008.

[9] Wei-Ta Chu and Ming-Hung Tsai. Visual pattern dis-

covery for architecture image classification and product

image search. In Proceedings of the ACM International

Conference on Multimedia Retrieval (ICMR ’12), pages

1–8, 2012.

[10] Maximilien Danisch, Oana Balalau, and Mauro Sozio.

Listing K-cliques in Sparse Real-World Graphs*. In

Proceedings of the World Wide Web Conference (WWW

’18), pages 589–598, 2018.

[11] Laxman Dhulipala, Guy E Blelloch, and Julian Shun.

Low-Latency Graph Streaming Using Compressed

Purely-Functional Trees. In Proceedings of the ACM

SIGPLAN Conference on Programming Language De-

sign and Implementation (PLDI ’19), pages 918–934,

2019.

[12] Vinicius Dias, Carlos H. C. Teixeira, Dorgival Guedes,

Wagner Meira, and Srinivasan Parthasarathy. Fractal:

A General-Purpose Graph Pattern Mining System. In

Proceedings of the ACM International Conference on

Management of Data (SIGMOD ’19), pages 1357–1374,

2019.

7



[13] Mohammed Elseidy, Ehab Abdelhamid, Spiros Ski-

adopoulos, and Panos Kalnis. GraMi: Frequent Sub-

graph and Pattern Mining in a Single Large Graph. In

Proceedings of the VLDB Endowment (PVLDB ’14),

pages 517–528, 2014.

[14] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny

Bickson, and Carlos Guestrin. PowerGraph: Distributed

Graph-parallel Computation on Natural Graphs. In Pro-

ceedings of the USENIX Conference on Operating Sys-

tems Design and Implementation (OSDI ’12), pages

17–30, 2012.

[15] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave,

Daniel Crankshaw, Michael J. Franklin, and Ion Stoica.

GraphX: Graph Processing in a Distributed Dataflow

Framework. In Proceedings of the USENIX Confer-

ence on Operating Systems Design and Implementation

(OSDI ’14), pages 599–613, 2014.

[16] Joshua A. Grochow and Manolis Kellis. Network Motif

Discovery Using Subgraph Enumeration and Symmetry-

Breaking. In Research in Computational Molecular

Biology, pages 92–106, 2007.

[17] Bronwyn Hall, Adam Jaffe, and Manuel Trajtenberg.

The NBER Patent Citation Data File: Lessons, Insights

and Methodological Tools. NBER Working Paper 8498,

2001.

[18] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo

Park, and Wook-Shin Han. Efficient Subgraph Matching:

Harmonizing Dynamic Programming, Adaptive Match-

ing Order, and Failing Set Together. In Proceedings of

the ACM International Conference on Management of

Data (SIGMOD ’19), pages 1429–1446, 2019.

[19] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. Tur-

boISO: Towards Ultrafast and Robust Subgraph Isomor-

phism Search in Large Graph Databases. In Proceedings

of the ACM International Conference on Management

of Data (SIGMOD ’13), pages 337–348, 2013.

[20] Loc Hoang, Vishwesh Jatala, Xuhao Chen, Udit Agar-

wal, Roshan Dathathri, Gurbinder Gill, and Keshav Pin-

gali. DistTC: High Performance Distributed Triangle

Counting. In IEEE High Performance Extreme Comput-

ing Conference (HPEC ’19), pages 1–7, 2019.

[21] Sungpack Hong, Siegfried Depner, Thomas Manhardt,

Jan Van Der Lugt, Merijn Verstraaten, and Hassan Chafi.

PGX.D: a fast distributed graph processing engine. In

Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Anal-

ysis (SC ’15), pages 1–12, 2015.

[22] Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shiv-

aram Venkataraman, Vladimir Braverman, and Ion Sto-

ica. ASAP: Fast, Approximate Graph Pattern Mining

at Scale. In Proceedings of the USENIX Symposium on

Operating Systems Design and Implementation (OSDI

’18), pages 745–761, Carlsbad, CA, 2018.

[23] Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora.

Peregrine: A Pattern-Aware Graph Mining System. In

Proceedings of the Fifteenth European Conference on

Computer Systems, pages 1–16, 2020.

[24] Hyeonji Kim, Juneyoung Lee, Sourav S. Bhowmick,

Wook-Shin Han, JeongHoon Lee, Seongyun Ko, and

Moath H.A. Jarrah. DUALSIM: Parallel Subgraph Enu-

meration in a Massive Graph on a Single Machine. In

Proceedings of the ACM International Conference on

Management of Data (SIGMOD ’16), pages 1231–1245,

2016.

[25] Jinha Kim, Wook-Shin Han, Sangyeon Lee, Kyungyeol

Park, and Hwanjo Yu. OPT: A New Framework for

Overlapped and Parallel Triangulation in Large-scale

Graphs. In Proceedings of the ACM International Con-

ference on Management of Data (SIGMOD ’14), pages

637–648, 2014.

[26] Kyoungmin Kim, In Seo, Wook-Shin Han, Jeong-Hoon

Lee, Sungpack Hong, Hassan Chafi, Hyungyu Shin, and

Geonhwa Jeong. TurboFlux: A Fast Continuous Sub-

graph Matching System for Streaming Graph Data. In

Proceedings of the ACM International Conference on

Management of Data (SIGMOD ’18), pages 411–426,

2018.

[27] Frederick S. Kuhl, Gordon M. Crippen, and Donald K.

Friesen. A combinatorial algorithm for calculating

ligand binding. Journal of Computational Chemistry,

5(1):24–34, 1984.

[28] Pradeep Kumar and H Howie Huang. GraphOne: A Data

Store for Real-Time Analytics on Evolving Graphs. In

Proceedings of the USENIX Conference on File and

Storage Technologies (FAST ’19), pages 249–263, 2019.

[29] Longbin Lai, Lu Qin, Xuemin Lin, Ying Zhang, Lijun

Chang, and Shiyu Yang. Scalable Distributed Subgraph

Enumeration. In Proceedings of the VLDB Endowment

(PVLDB ’16), pages 217–228, 2016.

[30] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik,

James C. Dehnert, Ilan Horn, Naty Leiser, Grzegorz

Czajkowski, and Google Inc. Pregel: A System for

Large-Scale Graph Processing. In Proceedings of the

ACM International Conference on Management of Data

(SIGMOD ’10), pages 135–146, 2010.

8



[31] Mugilan Mariappan, Joanna Che, and Keval Vora. DZiG:

Sparsity-Aware Incremental Processing of Streaming

Graphs. In Proceedings of the European Conference on

Computer Systems (EuroSys ’21), pages 83–98, 2021.

[32] Mugilan Mariappan and Keval Vora. GraphBolt:

Dependency-Driven Synchronous Processing of Stream-

ing Graphs. In Proceedings of the European Conference

on Computer Systems (EuroSys ’19), pages 25:1–25:16,

2019.

[33] Daniel Mawhirter and Bo Wu. AutoMine: Harmonizing

High-level Abstraction and High Performance for Graph

Mining. In Proceedings of the ACM Symposium on

Operating Systems Principles (SOSP ’19), pages 509–

523, 2019.

[34] Daniel Mawhirter, Bo Wu, Dinesh Mehta, and Chao Ai.

ApproxG: Fast Approximate Parallel Graphlet Counting

Through Accuracy Control. In IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CC-

GRID ’18), pages 533–542, 2018.

[35] Jean McGloin and David Kirk. An Overview of Social

Network Analysis. Journal of Criminal Justice Educa-

tion, 21:169–181, 2010.

[36] Amine Mhedhbi and Semih Salihoglu. Optimizing Sub-

graph Queries by Combining Binary and Worst-Case

Optimal Joins. In Proceedings of the VLDB Endowment

(PVLDB ’19), page 1692–1704, 2019.

[37] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, N Kashtan,

Dmitri Chklovskii, and Uri Alon. Network Motifs: Sim-

ple Building Blocks of Complex Networks. Science,

298:824–7, 2002.

[38] Donald Nguyen, Andrew Lenharth, and Keshav Pingali.

A Lightweight Infrastructure for Graph Analytics. In

Proceedings of the ACM Symposium on Operating Sys-

tems Principles (SOSP ’13), pages 456–471, 2013.

[39] Tahsin Reza, Matei Ripeanu, Nicolas Tripoul, Geof-

frey Sanders, and Roger Pearce. PruneJuice: Pruning

Trillion-edge Graphs to a Precise Pattern-matching So-

lution. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage,

and Analysis (SC ’18), pages 21:1–21:17, 2018.

[40] Nicholas P. Roth, Vasileios Trigonakis, Sungpack Hong,

Hassan Chafi, Anthony Potter, Boris Motik, and Ian Hor-

rocks. PGX.D/Async: A Scalable Distributed Graph

Pattern Matching Engine. In Proceedings of the Inter-

national Workshop on Graph Data-Management Expe-

riences & Systems (GRADES ’17), 2017.

[41] Amitabha Roy, Laurent Bindschaedler, Jasmina Malice-

vic, and Willy Zwaenepoel. Chaos: Scale-out Graph

Processing from Secondary Storage. In Proceedings of

the ACM Symposium on Operating Systems Principles

(SOSP ’15), pages 410–424, 2015.

[42] Semih Salihoglu and Jennifer Widom. GPS: A Graph

Processing System. In Proceedings of the International

Conference on Scientific and Statistical Database Man-

agement (SSDBM ’13), 2013.

[43] Marco Serafini, Gianmarco De Francisci Morales, and

Georgos Siganos. QFrag: Distributed Graph Search via

Subgraph Isomorphism. In Proceedings of the Sympo-

sium on Cloud Computing (SoCC ’17), pages 214–228,

2017.

[44] Julian Shun and Guy E. Blelloch. Ligra: A Lightweight

Graph Processing Framework for Shared Memory. In

Proceedings of the ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming (PPoPP

’13), pages 135–146, 2013.

[45] Julian Shun and Kanat Tangwongsan. Multicore triangle

computations without tuning. In IEEE International

Conference on Data Engineering (ICDE ’15), pages

149–160, 2015.

[46] Qi Song, Mohammad Hossein Namaki, and Yinghui

Wu. Answering Why-Questions for Subgraph Queries

in Multi-attributed Graphs. In IEEE International Con-

ference on Data Engineering (ICDE ’19), pages 40–51,

2019.

[47] Nilothpal Talukder and Mohammed J. Zaki. A Dis-

tributed Approach for Graph Mining in Massive Net-

works. Data Mining and Knowledge Discovery,

30(5):1024–1052, 2016.

[48] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Ser-

afini, Georgos Siganos, Mohammed J. Zaki, and Ashraf

Aboulnaga. Arabesque: A System for Distributed Graph

Mining. In Proceedings of the ACM Symposium on Op-

erating Systems Principles (SOSP ’15), pages 425–440,

2015.

[49] Keval Vora, Rajiv Gupta, and Guoqing Xu. KickStarter:

Fast and Accurate Computations on Streaming Graphs

via Trimmed Approximations. In Proceedings of the

International Conference on Architectural Support for

Programming Languages and Operating Systems (ASP-

LOS ’17), pages 237–251, 2017.

[50] Keval Vora, Sai Charan Koduru, and Rajiv Gupta. AS-

PIRE: Exploiting Asynchronous Parallelism in Iterative

Algorithms Using a Relaxed Consistency Based DSM.

In Proceedings of SIGPLAN International Conference

on Object Oriented Programming Systems Languages

and Applications (OOPSLA ’14), page 861–878, 2014.

9



[51] Keval Vora, Chen Tian, Rajiv Gupta, and Ziang Hu.

CoRAL: Confined Recovery in Distributed Asyn-

chronous Graph Processing. In Proceedings of the Inter-

national Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS

’17), page 223–236, 2017.

[52] Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang

Nguyen, and Guoqing Harry Xu. RStream: Marrying

Relational Algebra with Streaming for Efficient Graph

Mining on a Single Machine. In Proceedings of the

USENIX Conference on Operating Systems Design and

Implementation (OSDI ’18), pages 763–782, 2018.

[53] Liang Wu and Huan Liu. Tracing Fake-News Footprints:

Characterizing Social Media Messages by How They

Propagate. In Proceedings of the ACM International

Conference on Web Search and Data Mining (WSDM

’18), pages 637–645, 2018.

[54] Gensheng Zhang, Damian Jimenez, and Chengkai Li.

Maverick: Discovering Exceptional Facts from Knowl-

edge Graphs. In Proceedings of the ACM International

Conference on Management of Data (SIGMOD ’18),

pages 1317–1332, 2018.

[55] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and

Xiaosong Ma. Gemini: A Computation-Centric Dis-

tributed Graph Processing System. In Proceedings of

the USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’16), pages 301–316, 2016.

10




